Use of a Brief Food Frequency Questionnaire for Estimating Daily Number of Servings of Fruits and Vegetables in a Minority Adolescent Population

JENNIFER DI NOIA, PhD; ISOBEL R. CONTENTO, PhD, CDN

ABSTRACT
The validity of the 5 A Day for Better Health Program food frequency questionnaire (5 A Day FFQ) for estimating fruit and vegetable consumption was examined in a sample of 156 African-American adolescents aged 10 to 14 years. To determine validity, the correlation between 5 A Day FFQ fruit, juice, and vegetable intake and 3-day intake measured by direct observation was assessed. Correlations were calculated separately by food type (ie, fruits, juices, and vegetables) and sex and age to determine whether the accuracy of youths’ recording differed based on these factors. Paired-samples t tests were used to test for differences between 5 A Day FFQ and observed intake estimates. The ability of the 5 A Day FFQ to correctly classify youths according to intake level (ie, intake of five or more daily servings) was also examined. The 5 A Day FFQ intake was significantly correlated with observed intake ($r=0.39; P<0.01$). Correlations were weaker by food type ($r=0.15$ to $r=0.28$) and did not differ based on youths’ sex or age. Mean 5 A Day FFQ intake (6.74±6.00 servings) was considerably higher than mean observed intake (5.41±1.51 servings), and this was a result of the overestimation of vegetable intake. Sensitivity, specificity, and positive and negative predictive values of the 5 A Day FFQ were 67.1%, 68.6%, 63.5%, and 71.9%, respectively. Findings suggest that the 5 A Day FFQ may be more useful as a screening tool for identifying African-American adolescents most in need of intervention than for estimating youths’ mean intake in dietary intervention programs.

C current dietary guidelines recommend consumption of between 5 and 13 daily servings of fruits and vegetables (1), yet average American intakes are well below recommended levels (2). Differences between recommended and actual intake are more pronounced among African Americans (2), underscoring the need for dietary interventions to increase intakes in this population. The choice of assessment method for tracking changes in intake is a key consideration in the design of such programs.

Food frequency questionnaires (FFQs) are commonly used for this purpose (3). Data collection and processing costs and respondent burden are lower for FFQs than for other intake assessment methods, such as multiple food records and 24-hour recalls, features that make them attractive to program planners (4). Although they can be of considerable length, shorter questionnaires for measuring intakes of specific nutrients or food groups have been developed (5-8).

The 5 A Day for Better Health Program FFQ (5 A Day FFQ) is a seven-item measure of fruit and vegetable consumption (6). Correlations between 5 A Day FFQ intake and intake measured by full-length FFQs, food records, and 24-hour recalls range from 0.50 to 0.52, 0.19 to 0.51, and 0.50 to 0.58, respectively (5,6,9-13). Relative to these reference methods, the 5 A Day FFQ has tended to underestimate intake.

Validation studies of the 5 A Day FFQ have been conducted primarily with adults (5,6,9-12). The purpose of this study was to examine the validity of the 5 A Day FFQ for estimating fruit and vegetable consumption among African-American adolescents. In a cross-sectional design, the correlation between 5 A Day FFQ intake and 3-day intake measured by direct observation was assessed. A significant and moderate correlation (ie, ≥0.50 by Cohen’s conventions) was considered evidence of validity (14). Correlations were calculated separately by food type (ie, fruits, juices, and vegetables) and by sex and age to determine whether the accuracy of youths’ recording differed based on these factors. The ability of the 5 A Day FFQ to correctly classify youths according to intake level (ie, intake of five or more daily servings) was also examined. Objectives for this study were to validate the 5
A Day FFQ as an assessment of fruit and vegetable consumption among African-American adolescents and determine the effect of sex and age on the validity of the 5 A Day FFQ.

METHODS

Data were provided by African-American adolescents enrolled in a measurement validation study described elsewhere (15). Youths were recruited through summer camp programs offered at youth services agencies in New York City. One hundred eighty one youths between the ages of 10 and 14 years were enrolled. Because observational data used to validate the 5 A Day FFQ were collected during meals served during 3 consecutive days (as described here later), evaluation of the 5 A Day FFQ was restricted to youths who were present at all meals and thus for whom complete observational data were available (n=156). Study procedures were approved by the Institutional Review Board of Intersystems Incorporated. Prior to their study involvement, all youths provided written assent and informed written consent was obtained from a parent or guardian.

Youths were served breakfast, lunch, and dinner at collaborating sites during 3 consecutive days. At each meal, youths were given a tray with one serving each (as defined by 5 A Day criteria) of fruits, juices, and vegetables and were offered a variety of main course options (16). Between meals, youths participated in recreational activities. They were not offered fruits and vegetables to snack on at these other times.

Trained staff present at meals observed the amounts of fruit, juice, and vegetables youths left after eating by using the plate-waste-by-visual-estimate method (17). They recorded the portion consumed of each serving on a form that contained the following response options: zero, one fourth, one half, three fourths, and one. Because meals were served in a large-group format, each staff member observed different groups of up to 10 youths each; they did not concurrently observe the same youths at each meal.

After dinner on the third day, youths were administered the 5 A Day FFQ, a nonquantitative measure that queries the number of times respondents ate or drank the following items during the previous month: 100% orange juice or grapefruit juice; other 100% fruit juices; green salad; French fries or fried potatoes; baked, boiled, or mashed potatoes; other vegetables; and fruit. The specific wording of items is shown in the Figure. Because the reference periods for the measures differed (ie, the preceding month vs the preceding 3 days, respectively), 5 A Day FFQ and observed intake estimates were converted to a common metric. Youths’ 5 A Day FFQ responses were transformed to a daily equivalent and summed to provide a composite measure of servings per day. Comparable estimates of observed intake were computed by determining the number of servings youths were observed eating on each day and averaging these amounts across days. 5 A Day FFQ and observed intake estimates by food type (ie, fruits, juices, and vegetables) were also calculated. The 5 A Day FFQ item for measuring intake of French fries and fried potatoes was excluded from scoring procedures because these foods are high in fat and are not recommended in the 5 A Day for Better Health Program (18). French fries and fried potatoes were included in the 5 A Day FFQ to help respondents distinguish them from the nonfried potatoes the measure was intended to count. The item for measuring these foods was specifically designed to identify and then omit them from intake estimates of recommended foods and juices (19). French fries and fried potatoes were not included in meals provided to youths; thus, they were also not reflected in observed intake estimates.

Pearson correlations were calculated to provide an index of relation between 5 A Day FFQ and observed intake and intake by food type. To examine whether and how the correlations differed among the sex and age groups studied, youths were stratified by sex and age and separate correlations were calculated for males and females and for younger (ie, aged 10 to 11 years) and older (ie, aged 12 to 14 years) youths. To determine whether pairs of correlations (eg, males vs females) were statistically different, the Fisher transformation method was used (20). Paired samples t tests were used to test for differences between 5 A Day FFQ and observed intake estimates.

To examine the ability of the 5 A Day FFQ to correctly classify youths according to intake level, 5 A Day FFQ and observed intake were dichotomized (fewer than five daily servings, five or more daily servings). The sensitivity, specificity, and positive and negative predictive values of the 5 A Day FFQ were examined using these dichotomized scores. All analyses were conducted using SPSS software (version 12.0.1 for Windows, 2003, SPSS Inc, Chicago, IL).

RESULTS AND DISCUSSION

Participants had a mean age of 11.89 (±1.24) years and were 55% female. Although 5 A Day FFQ intake was significantly correlated with observed intake (r=0.39; P<0.01), youths significantly overestimated their intake using the 5 A Day FFQ (t₁₅₅=2.97; P<0.01) (Table).
Table. Comparison of daily servings of fruits, juices, and vegetables and servings by food type estimated by the 5 A Day for Better Health Program food frequency questionnaire and observed intake

<table>
<thead>
<tr>
<th>Intake measure</th>
<th>n(^a)</th>
<th>5 A Day FFQ(^b) (mean±SD(^c))</th>
<th>Range</th>
<th>Observed intake (mean±SD)</th>
<th>Range</th>
<th>5 A Day FFQ minus observed intake (difference±SE(^d))</th>
<th>P value(^e)</th>
<th>Correlation between 5 A Day FFQ and observed intake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All cases</td>
<td>156</td>
<td>6.74±6.00</td>
<td>29.80</td>
<td>5.41±1.51</td>
<td>8.25</td>
<td>1.33±0.45</td>
<td>0.01</td>
<td>0.39(^{**})</td>
</tr>
<tr>
<td>Male</td>
<td>70</td>
<td>6.30±5.05</td>
<td>19.93</td>
<td>5.30±1.54</td>
<td>6.67</td>
<td>1.00±0.57</td>
<td>0.08</td>
<td>0.34(^{**})</td>
</tr>
<tr>
<td>Female</td>
<td>86</td>
<td>7.10±6.69</td>
<td>29.80</td>
<td>5.51±1.50</td>
<td>8.17</td>
<td>1.59±0.67</td>
<td>0.01</td>
<td>0.43(^{**})</td>
</tr>
<tr>
<td>10-11 years</td>
<td>64</td>
<td>6.41±6.37</td>
<td>28.80</td>
<td>5.59±1.49</td>
<td>8.08</td>
<td>0.82±0.75</td>
<td>0.28</td>
<td>0.36(^{**})</td>
</tr>
<tr>
<td>12-14 years</td>
<td>92</td>
<td>6.97±5.76</td>
<td>29.80</td>
<td>5.29±1.52</td>
<td>6.67</td>
<td>1.68±0.55</td>
<td>0.01</td>
<td>0.43(^{**})</td>
</tr>
<tr>
<td>Fruit intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All cases</td>
<td>147</td>
<td>1.59±1.80</td>
<td>5.00</td>
<td>1.61±0.72</td>
<td>3.33</td>
<td>−0.02±0.15</td>
<td>0.91</td>
<td>0.24(^{**})</td>
</tr>
<tr>
<td>Male</td>
<td>64</td>
<td>1.31±1.59</td>
<td>5.00</td>
<td>1.49±0.78</td>
<td>2.92</td>
<td>−0.18±0.20</td>
<td>0.37</td>
<td>0.32(^{**})</td>
</tr>
<tr>
<td>Female</td>
<td>83</td>
<td>1.81±1.93</td>
<td>5.00</td>
<td>1.70±0.66</td>
<td>3.25</td>
<td>−0.11±0.21</td>
<td>0.60</td>
<td>0.23(^{**})</td>
</tr>
<tr>
<td>10-11 years</td>
<td>61</td>
<td>1.29±1.70</td>
<td>5.00</td>
<td>1.56±0.69</td>
<td>3.17</td>
<td>−0.27±0.75</td>
<td>0.23</td>
<td>0.20</td>
</tr>
<tr>
<td>12-14 years</td>
<td>86</td>
<td>1.81±1.86</td>
<td>5.00</td>
<td>1.65±0.75</td>
<td>2.92</td>
<td>−0.16±0.20</td>
<td>0.42</td>
<td>0.25(^{**})</td>
</tr>
<tr>
<td>Juice intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All cases</td>
<td>156</td>
<td>2.92±2.89</td>
<td>10.00</td>
<td>2.61±0.49</td>
<td>3.08</td>
<td>0.31±0.23</td>
<td>0.18</td>
<td>0.15</td>
</tr>
<tr>
<td>Male</td>
<td>70</td>
<td>3.10±2.88</td>
<td>10.00</td>
<td>2.73±0.35</td>
<td>1.92</td>
<td>0.37±0.35</td>
<td>0.28</td>
<td>−0.02</td>
</tr>
<tr>
<td>Female</td>
<td>86</td>
<td>2.77±2.92</td>
<td>10.00</td>
<td>2.52±0.57</td>
<td>2.83</td>
<td>0.25±0.31</td>
<td>0.41</td>
<td>0.22(^{**})</td>
</tr>
<tr>
<td>10-11 years</td>
<td>64</td>
<td>2.96±2.97</td>
<td>10.00</td>
<td>2.69±0.43</td>
<td>2.42</td>
<td>0.27±0.37</td>
<td>0.47</td>
<td>0.10</td>
</tr>
<tr>
<td>12-14 years</td>
<td>92</td>
<td>2.89±2.86</td>
<td>10.00</td>
<td>2.56±0.52</td>
<td>2.83</td>
<td>0.33±0.29</td>
<td>0.25</td>
<td>0.18</td>
</tr>
<tr>
<td>Vegetable intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All cases</td>
<td>156</td>
<td>2.32±2.95</td>
<td>15.00</td>
<td>1.26±0.68</td>
<td>4.67</td>
<td>1.06±0.23</td>
<td>0.01</td>
<td>0.28(^{**})</td>
</tr>
<tr>
<td>Male</td>
<td>70</td>
<td>2.01±2.47</td>
<td>10.21</td>
<td>1.21±0.67</td>
<td>2.67</td>
<td>0.80±0.29</td>
<td>0.01</td>
<td>0.16</td>
</tr>
<tr>
<td>Female</td>
<td>86</td>
<td>2.57±1.30</td>
<td>15.00</td>
<td>1.30±0.68</td>
<td>4.58</td>
<td>1.27±0.34</td>
<td>0.01</td>
<td>0.34(^{**})</td>
</tr>
<tr>
<td>10-11 years</td>
<td>64</td>
<td>2.24±3.07</td>
<td>15.00</td>
<td>1.37±0.70</td>
<td>4.33</td>
<td>0.85±0.37</td>
<td>0.03</td>
<td>0.26(^{**})</td>
</tr>
<tr>
<td>12-14 years</td>
<td>92</td>
<td>2.39±2.88</td>
<td>15.00</td>
<td>1.19±0.65</td>
<td>2.67</td>
<td>1.20±0.29</td>
<td>0.01</td>
<td>0.30(^{**})</td>
</tr>
</tbody>
</table>

\(^a\)For the fruit category, the sample size was reduced due to the omission of cases with missing data (n=9).
\(^b\)5 A Day FFQ=5 A Day for Better Health Program food frequency questionnaire.
\(^c\)SD=standard deviation.
\(^d\)SE=standard error.
\(^e\)Values shown indicate the level of significance for paired-samples t tests comparing 5 A Day FFQ and observed intake.

The correlations were weaker by food type and were significant for fruits (r=0.24; P<0.01) and vegetables (r=0.28; P<0.01), but not juices (r=0.15; P>0.05). 5 A Day FFQ intake of fruits and juices did not differ from observed fruit and juice intake. However, 5 A Day FFQ intake of vegetables was significantly higher than observed vegetable intake (t\(_{155}=-4.65\); P<0.01). Correlations between 5 A Day FFQ and observed intake and intake by food type did not differ based on youths’ sex or age.

Sensitivity, specificity, and positive and negative predictive values of the 5 A Day FFQ were 67.1%, 68.6%, 63.5%, and 71.9%, respectively. This means that 67.1% of youths with observed intake of fewer than five daily servings were classified by the 5 A Day FFQ as consuming fewer than five daily servings, and 68.6% of youths with observed intake of five or more daily servings were classified by the 5 A Day FFQ as consuming five or more daily servings. Moreover, if the 5 A Day FFQ determined that intake was fewer than five daily servings, it was correct 63.5% of the time, and if it determined that intake was five or more daily servings, it was correct 71.9% of the time. These performance indicators suggest that the 5 A Day FFQ is useful for confirming intake levels (as indicated by its positive and negative predictive value) and it will correctly classify sizable and similar proportions of youths with intakes below and at or above five daily servings (as indicated by its sensitivity and specificity, respectively).

This study examined the validity of the 5 A Day FFQ for estimating fruit and vegetable consumption among African-American adolescents. The correlation between 5 A Day FFQ and observed intake was below the a priori criterion, an indication that the 5 A Day FFQ was not a valid measure of intake in this population. Noteworthy is the heterogeneity of responses to 5 A Day FFQ items as indicated by the large range of values for 5 A Day FFQ intake estimates. Although the reference period for the 5 A Day FFQ is the preceding month, response options query the number of times per month, week, or day respondents consumed the included items. The large variation found may be an indication that youths had difficulty quantifying their monthly intake in daily and

October 2009 ● Journal of the AMERICAN DIETETIC ASSOCIATION 1787
weekly equivalents, a factor that may account for the poor validity of the measure.

The overestimation found was consistent with findings from a validation study of the 5 A Day FFQ in a sample of children (13). In that study, youths overestimated their intake regardless of food type, whereas in this study, youths overestimated their vegetable intake only. A number of factors may explain this pattern.

Observational data revealed that youths’ vegetable intake was lower than their fruit and juice intake. Youths’ tendency to consume more fruit (mostly through fruit juice) than vegetables is consistent with intake patterns found among African Americans in other research (21). Because youths consumed fruits and juices more often than vegetables, they may have been recalled with greater accuracy.

Alternatively, the overestimation may be an artifact of the greater number of items used to measure vegetable intake. The 5 A Day FFQ uses three items to measure vegetable intake, two items to measure juice intake, and one item to measure fruit intake. In other research, reported servings of fruits, juices, and vegetables increased in direct proportion to the number of questions for measuring these foods (22).

Possibly, youths were influenced by social approval and social desirability biases, the tendencies of individuals to respond in a manner consistent with expected norms (23). Youths may have been aware that vegetables are foods they should be in the habit of eating. This awareness, combined with their low vegetable intake, may have encouraged them to report consuming vegetables more often than was the case.

The small and self-selected sample limits the generalizability of findings. The time periods referenced by the measures used differed. Youths may have had difficulty translating servings consumed during 3 days to servings consumed in a month. Results may therefore underestimate the true validity of the 5 A Day FFQ. Respondents did not have the option of selecting from among a variety of fruits and vegetables at meals and they were not given these foods to snack on between meals. There was also the possibility that youths consumed additional fruits and vegetables before and after camp. Thus, estimates of observed intake may not reflect youths’ true eating behavior. Previous research has shown that FFQs are susceptible to seasonal reporting bias (24, 25). Because this study was conducted in the summer, results may be different than they would be at other times of the year.

This study used observational data to validate the 5 A Day FFQ, a criterion measure superior to self-report measures (26). This is the first study to examine the validity of the 5 A Day FFQ among African-American adolescents. Findings advance understanding of the validity of this tool for estimating fruit and vegetable consumption in this population.

CONCLUSIONS
The poor validity of the 5 A Day FFQ suggests that it is less than optimal for program evaluation purposes. The 5 A Day FFQ may overestimate the true intervention effect or fail to find an effect on vegetable intake. Investigators are therefore encouraged to administer measures of known validity to confirm study findings based on the 5 A Day FFQ alone. The moderate sensitivity, specificity, and positive and negative predictive value of the 5 A Day FFQ suggest that it may be more useful as a screening tool for identifying African-American youths most in need of intervention. The decision to use the 5 A Day FFQ for screening purposes should be based on tolerance for some misclassification.

STATEMENT OF POTENTIAL CONFLICT OF INTEREST: No potential conflict of interest was reported by the authors.

FUNDING/SUPPORT: The work under consideration was supported by funding from the National Cancer Institute (CA096162).

References

