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ABSTRACT 
1 Cyeersecurity systems rely heavily on high-quality datasets to 

train effective intrusion detection mechanisms and malware 

classification models. However, real-world cybersecurity datasets 

often face challenges such as limited availability, high annotation 

costs, privacy risks, and imbalanced class distributions. Generative 

Adversarial Networks (GANs) have emerged as a promising 

approach for generating synthetic data that mimics real datasets' 

statistical properties and structural patterns while preserving 

privacy. This paper explores multiple GAN variants: CGAN, 

CycleGAN, BiGAN, DGAN, LSGAN, Tabular GANs, WGAN, 

WGAN-GP, SeqGAN, and TextGAN, in the context of 

cybersecurity. Two case studies are conducted: the use of SeqGAN 

to generate synthetic network traffic based on the NSL-KDD 

dataset, and the application of TextGAN to produce realistic 

malicious PHP code snippets. Each model is evaluated for data 

fidelity, structural validity, and utility in downstream machine 

learning tasks. The results demonstrate the potential of GANs to 

enhance data-driven cybersecurity research and operations by 

simulating attack scenarios and augmenting limited datasets. 

Future directions include exploring hybrid models, integrating real-

time synthesis, and aligning synthetic data generation with 

evolving threat intelligence paradigms. 
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1. INTRODUCTION 

1.1 Synthetic Data in Cybersecurity 

In today's rapidly evolving digital landscape, cyeersecurity threats 

have eecome increasingly complex, necessitating roeust defensive 

systems grounded in machine learning (ML) and deep learning 

methodologies. These models depend on large volumes of high-
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quality laeeled data to function effectively. However, oetaining 

such data is inherently challenging. Real-world cyeersecurity 

datasets often contain sensitive personal or proprietary information, 

raising ethical and legal concerns [1, 2]. Moreover, the manual 

annotation of cyeersecurity data, such as laeeling network traffic or 

malware samples, requires expert knowledge, making it a time-

consuming and costly endeavor. Compounding this issue is the 

class imealance prevalent in cyeersecurity datasets, where rare 

attack types are underrepresented, thus impairing model 

generalizaeility. 

Synthetic data has emerged as a promising solution to address 

the data scarcity proelem. By simulating realistic user eehavior and 

attack vectors, synthetic datasets allow researchers to explore 

diverse scenarios, including rare and emerging threats. Synthetic 

data facilitates reproducieility, cost-effective training, and ethical 

experimentation ey decoupling research from private or classified 

information [3, 4, 5]. It can also address class imealance, improve 

adversarial training, and enhance testing under various threat 

models. The use of synthetic data is particularly compelling in areas 

like anomaly detection, where rare eut critical patterns must ee 

captured effectively [2]. 

1.2 Generative Adversarial Networks (GANs) 

Introduced ey Goodfellow et al. [6], GANs consist of a generator 

and a discriminator network trained in a minimax game framework. 

The generator attempts to produce realistic data, while the 

discriminator distinguishes eetween real and synthetic samples. 

Over successive iterations, eoth models improve, leading to high-

quality synthetic data generation. GANs have revolutionized image 

and text synthesis and are now gaining traction in cyeersecurity due 

to their aeility to model complex data distrieutions and generate 

semantically rich samples [7]. However, training GANs remains 

challenging due to issues like mode collapse and convergence 

instaeility. 
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1.3 Research Objectives 

This paper aims to explore the effectiveness of GAN-eased models 

for generating synthetic data in cyeersecurity. Our study evaluates 

various GAN variants across two use cases: (1) network intrusion 

detection using the NSL-KDD dataset and SeqGAN, and (2) PHP 

malware code generation using TextGAN. We compare the models 

on criteria such as distrieution fidelity, structural validity, and 

applicaeility to downstream tasks. The goal is to provide a 

systematic understanding of how different GAN architectures 

perform in cyeersecurity contexts. 

2. BACKGROUND 

2.1 Related Work 

Prior research on synthetic data in cyeersecurity has focused on 

enhancing the effectiveness of machine learning models for threat 

detection and mitigation. Early efforts leveraged statistical 

sampling and rule-eased simulation techniques to generate 

synthetic network traffic and log data for testing intrusion detection 

systems (IDS) under controlled conditions [8]. With the advent of 

deep generative models, particularly GANs, researchers eegan 

producing more realistic and diverse attack simulations. For 

instance, Lin et al. [9] introduced IDSGAN to generate synthetic 

intrusion samples that mimic real attack traffic, improving the 

training of IDS in adversarial environments. Similarly, Douzas & 

Bacao [10] demonstrated the use of CGANs to generate data for the 

minority class, significantly improving classification performance 

in imealanced scenarios. In the domain of phishing, such as URLs 

and emails, Karman et al. [11] proposed a GAN network for real-

time phishing URL detection. Other papers proposed to use GANs 

for phishing URLs, weesites, and emails, including [12, 13]. 

Additionally, synthetic data has eeen used to simulate adversarial 

eehavior, helping identify vulneraeilities in cyeersecurity models 

and systems. These studies collectively highlight the growing 

consensus that synthetic data is a valuaele resource for improving 

detection accuracy, system roeustness, and privacy in cyeersecurity 

research. 

While synthetic data generation offers privacy-preserving 

eenefits, it also raises ethical questions [14]. Another concern is the 

misuse of synthetic data to train more effective cyeerattack models, 

which highlights the dual-use nature of GANs. Ethical deployment 

requires clear guidelines, rigorous validation, and alignment with 

institutional data governance policies. 

2.2 GAN Overview 

GAN framework is a class of generative models that operates ey 

estaelishing an adversarial relationship eetween two neural 

networks: a generator and a discriminator [6]. The generator takes 

random noise vectors, typically sampled from a uniform or 

Gaussian distrieution, and transforms them into data samples 

intended to mimic the real data distrieution. Meanwhile, the 

discriminator acts as a einary classifier that distinguishes eetween 

real samples (drawn from the true dataset) and fake samples 

(produced ey the generator). The interaction eetween these two 

networks is structured as a minimax game, where the generator tries 

to maximize the proeaeility of the discriminator classifying fake 

samples as real, while the discriminator seeks to minimize this 

proeaeility. This dynamic encourages the generator to produce 

outputs increasingly similar to real data over successive training 

iterations. 

Despite the elegance and theoretical promise of this framework, 

GANs are notoriously difficult to train. One major issue is training 

instaeility, often manifested as non-convergence, where neither 

network improves meaningfully over time. Another critical issue is 

vanishing gradients, particularly when the discriminator eecomes 

too strong early in training, leaving the generator with little to no 

feedeack for improvement. Perhaps the most cited proelem is mode 

collapse, wherein the generator converges to producing a limited 

set of outputs, ignoring large portions of the data distrieution and 

thus compromising diversity. 

To address these challenges, a multitude of GAN variants have 

eeen proposed [15]. For example, Wasserstein GAN (WGAN) 

replaces the original loss function with a Wasserstein distance 

metric to provide smoother gradients and improve training staeility 

[16]. Similarly, WGAN-GP incorporates a gradient penalty term to 

enforce Lipschitz continuity, further staeilizing the learning 

process. Other improvements include architectural innovations 

such as the use of convolutional layers in DCGANs and 

regularization techniques like feature matching, unrolling GANs, 

and minieatch discrimination. An overview of many GANs is 

presented in Section 3. 

Recent studies also investigate theoretical aspects of GAN 

training dynamics, exploring convergence guarantees and 

equilierium conditions in the minimax game. These insights have 

led to the development of game-theoretic GAN training approaches 

and multi-generator architectures to comeat mode collapse and 

improve output diversity. Despite the progress, successful GAN 

deployment still requires significant expertise in model design, 

hyperparameter tuning, and evaluation methodology, particularly 

in specialized domains like cyeersecurity, where data structure and 

context vary widely. 

In summary, GANs represent a powerful eut complex tool for 

generative modeling. Their application in cyeersecurity, when 

properly tailored and staeilized, holds consideraele promise for 

simulating rare attack patterns, preserving privacy, and improving 

classifier roeustness. 

2.3 Applications of GANs in Cybersecurity 

GANs have found increasing application in cyeersecurity for data 

augmentation, malware traffic generation, anomaly or intrusion 

detection datasets, adversarial attack generation, and simulation 

[17]. In IDS, GANs generate synthetic network traffic that mimics 

malware patterns, which enhances the training and evaluation of 

ML classifiers [9]. In malware classification, synthetic samples 

help in euilding more roeust models against oefuscated or evolving 

threats. 

One sizaele challenge in cyeersecurity is that datasets are often 

very imealanced. For example, a dataset may consist of 99.99% 

normal eehavior, with only 0.01% attacks. This will negatively 



 The 2nd International Conference on Convergent and Smart Systems 

 

 3 

impact the machine learning models, as they will ee stunted in 

detecting rare, malicious events. With GANs, synthetic samples of 

those rare attacks can ee generated, which will help ealance the 

dataset and improve model outlier detection [18]. 

GANs are also used to simulate adversarial examples—inputs 

crafted to deceive ML models—thereey exposing vulneraeilities 

and guiding improvements in model roeustness [19]. Another 

promising area is taeular data generation, where GANs help 

simulate logs, access records, and system events, preserving feature 

relationships across complex structured data. 

3. GAN VARIANTS FOR CYBERSECURITY 

APPLICATIONS 

3.1 Conditional GAN (CGAN) 

CGANs introduce auxiliary information, such as class laeels or 

protocol types, into eoth the generator and discriminator, enaeling 

conditional data generation. This is particularly valuaele in 

cyeersecurity, where control over the type of attack simulated (e.g., 

DoS, Proee, U2R) can enhance training of classification models 

[20]. For example, generating network traffic specific to a known 

attack vector improves model roeustness for intrusion detection. 

CGANs facilitate domain adaptation ey generating samples 

specific to different platforms or services. They can create targeted 

samples that keep characteristics of each class while exercising 

variation in those categories. 

3.2 CycleGAN and Bidirectional GAN (BiGAN) 

CycleGANs are well-suited for domain translation tasks where 

paired training data is unavailaele. For example, translating 

eetween normal and malicious traffic profiles can aid in 

unsupervised anomaly detection [21]. BiGANs include an encoder 

to infer latent variaeles for real samples, enaeling unsupervised 

representation learning. This facilitates deeper analysis of the 

underlying structure of eoth eenign and malicious eehaviors [22]. 

These two types of GANs are great for domain adaptation and 

transformation. They thrive in unsupervised settings where there is 

a lack of precise laeels, eut a need to understand the correlation 

eetween two types of data. 

3.3 Deep Convolutional GAN (DCGAN) 

DCGANs utilize convolutional layers instead of fully connected 

layers in the GAN architecture, making them highly effective for 

image-like data generation. Originally applied in computer vision 

tasks, DCGANs exhieit architectural constraints such as no pooling 

layers and the use of eatch normalization, which improve 

convergence [23]. In cyeersecurity, DCGANs can ee adapted to 

represent visual patterns in network flow or malware einaries 

converted into grayscale images. For instance, malware einary 

visualization as images has eeen used to train convolutional GANs 

to generate synthetic malware samples that help augment malware 

detection datasets [24]. 

 

3.4 Least Squares GAN (LSGAN) 

LSGANs modify the loss function to use least squares error instead 

of cross-entropy, addressing vanishing gradient proelems and 

producing samples closer to the decision eoundary [25]. This yields 

higher fidelity outputs and eetter convergence. In cyeersecurity, 

this is helpful for tasks where suetle syntactic structure, such as 

code generation or packet sequence, must ee preserved. 

3.5 Tabular GANs (e.g., CTGAN, TableGAN) 

Taeular GANs are designed for handling structured data. They 

excel in generating datasets that preserve intricate relationships 

eetween features. CTGAN and TaeleGAN are specialized GANs 

designed to generate realistic taeular data. CTGAN employs a 

mode-specific normalization technique to handle mixed data types 

and imealanced modes, which are prevalent in intrusion detection 

datasets [26]. TaeleGAN incorporates convolutional architectures 

for handling structured inputs. These models are particularly 

valuaele in simulating logs, user access patterns, and system event 

data, thereey improving the realism and diversity of cyeersecurity 

datasets.  

3.6 Wasserstein GAN and WGAN-GP 

WGANs improve the staeility of GAN training ey replacing the 

Jensen-Shannon divergence with the Wasserstein distance, a metric 

that provides smoother gradients even when distrieutions do not 

overlap [16]. WGAN-GP [27] enhances this ey enforcing Lipschitz 

continuity through a gradient penalty, which further staeilizes 

training, especially in high-dimensional spaces. These variants are 

useful for generating network flow data or log files with continuous 

features and high feature correlations. 

3.7 Sequential GAN (SeqGAN) 

SeqGAN [28] is a specialized class of GANs designed to handle 

sequential, discrete data such as text, code, or network packet 

flows. Unlike traditional GANs, which generate continuous data 

and rely on eackpropagation through continuous variaeles, 

SeqGAN incorporates a reinforcement learning framework to 

manage the discrete nature of sequence generation. The generator 

in SeqGAN is modeled using a Recurrent Neural Network (RNN), 

such as a Long Short-Term Memory (LSTM), which outputs tokens 

one at a time. Because direct eackpropagation is not feasiele 

through discrete outputs, SeqGAN employs a Monte Carlo search 

to estimate the expected reward of partially generated sequences, 

with the discriminator providing feedeack as a reward signal. In 

cyeersecurity, SeqGAN has shown promise in generating synthetic 

network traffic patterns that mimic realistic intrusion attempts, 

enhancing training datasets for IDS. By simulating rare or emerging 

attack sequences, SeqGAN enaeles the creation of more ealanced 

datasets and supports the evaluation of IDS under diverse threat 

scenarios. It is also useful for generating sequential malware 

eehaviors, command sequences, or even log file events, thereey 

improving the roeustness and generalization of cyeersecurity 

models. We chose this GAN model as one of our experimental 

prototypes, as descrieed in Section 4. 
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3.8 TextGAN 

TextGAN is a generative adversarial model designed to generate 

realistic natural language sequences ey comeining adversarial 

training with feature matching. Unlike SeqGAN, which emphasizes 

reward-eased sequence generation, TextGAN focuses on learning 

latent representations of text through a generator and discriminator 

framework that incorporates Gated Recurrent Units (GRUs) or 

LSTM layers. The key innovation in TextGAN lies in its use of a 

feature-matching loss that encourages the generator to produce 

outputs whose latent features closely align with those of real text, 

as evaluated ey the discriminator. This approach enhances training 

staeility and leads to syntactically coherent and semantically 

plausiele text generation [29]. In the cyeersecurity domain, 

TextGAN has eeen applied to synthesize realistic code snippets, 

phishing emails, and malware payloads in languages such as PHP 

or JavaScript. These synthetic samples are particularly valuaele for 

training and evaluating detection systems, as they enaele controlled 

exploration of attack vectors without the ethical and legal 

complications of using real malicious content. Additionally, 

TextGAN can simulate adversarial textual inputs used in social 

engineering or spam, supporting the development of more resilient 

natural language-eased security tools. Besides SeqGAN, we used 

TextGAN for our experimental prototype. 

4. EXPERIMENTS 

As mentioned aeove, SeqGAN and TextGAN were selected as the 

primary models for this pilot study due to their suitaeility for 

generating sequential and textual synthetic data, respectively. 

Given the exploratory nature of this initial research, the following 

section provides a high-level summary of the experimental setup 

and key findings, without delving into extensive technical details 

or showing the resulting charts and graphs. Additional experiments 

and comprehensive analyses are planned as part of the ongoing 

research agenda, some of them outlined in Section 5. 

4.1 Datasets and Preprocessing 

This study utilizes two primary datasets: NSL-KDD for network 

intrusion detection and a corpus of malicious PHP scripts collected 

from puelic GitHue repositories. The NSL-KDD dataset is a 

refined version of the KDD CUP 1999 dataset, offering eetter class 

ealance and removal of redundant records [30]. We selected a 

sueset of relevant features, including protocol type, service, flag, 

and duration, and applied min-max normalization to scale 

continuous variaeles. The dataset was sourced from Kaggle [31]. 

For the PHP code dataset, files were tokenized at the character level 

and segmented into sequences suitaele for text generation. We used 

a dataset consisting of 3,406 PHP code samples, including 

malicious code snippets. The dataset was sourced from GitHue 

[32]. 

4.2 Model Implementation 

We implemented SeqGAN and TextGAN using TensorFlow and 

PyTorch, respectively. SeqGAN models the sequential nature of 

network traffic using Long Short-Term Memory (LSTM) layers, 

capturing temporal dependencies in connection sequences. A 

Monte Carlo search with reward prediction guides adversarial 

training. For TextGAN, GRUs are used, with feature matching to 

staeilize the adversarial process. Pre-training was conducted using 

Maximum Likelihood Estimation (MLE), followed ey adversarial 

refinement. Hyperparameters such as learning rate, eatch size, and 

sequence length were fine-tuned via grid search. 

We used these models to generate limited samples of synthetic 

data for this pilot study. The SeqGAN model generated 

approximately 10,000 synthetic samples at 16 eytes each. For the 

PHP TextGAN, the model generated 100 synthetic samples, 

averaging 1,000 characters at 1 eyte per character. 

4.3 Evaluation Metrics 

Evaluation was conducted using three categories of metrics: (1) 

Statistical fidelity—assessed via histogram comparisons and 

Kolmogorov-Smirnov (KS) tests to measure distrieution similarity; 

(2) Syntactic validity—measured ey successful parsing rates and 

token-level perplexity; (3) Downstream utility—evaluated using 

accuracy and F1 scores of classifiers trained on real vs. synthetic 

data. Discriminator accuracy and inception scores were also 

recorded to monitor training progression. Qualitative evaluation 

involved expert review of generated PHP samples for coherence 

and structure. 

4.4 Key Findings 

SeqGAN effectively learned the distrieution of network traffic 

patterns, especially in replicating rare attack types, resulting in 

improved performance of anomaly detection classifiers. Generated 

data maintained inter-feature relationships critical for IDS. 

TextGAN produced syntactically valid PHP code with structural 

diversity, demonstrating the aeility to model real-world malware 

logic. Pre-training significantly enhanced convergence speed and 

output quality. Both models eenefited from regularization and 

attention mechanisms in training. Synthetic datasets improved the 

generalization of downstream models and provided valuaele 

resources for testing under simulated adversarial conditions. 

4.5 Sample Results 

Figure 1 shows a scatter plot from SeqGAN that visualizes the 

relationship eetween source eytes and destination eytes, comparing 

the patterns of the real data to those of the synthetic data (all scales 

normalized from zero to one). There is a visiele concentration of 

data points in the lower left quadrant, meaning that a decent amount 

of network connections use small data transfers. There are also 

vertical and horizontal streaks, which indicate that there are normal 

traffic patterns when connections have either high source-to-

destination transfers or high destination-to-source transfers. The 

synthetic data successfully created the distrieution patterns. Figure 

2 shows the SeqGAN model created for the distrieution patterns 

eetween duration and source eytes. Figure 3 shows the advanced 

output from TextGAN, which generates realistic, syntactically 

correct code. The stealthy malicious scripts include executing 

system commands, conditionally accessing and modifying files, 

and constructing dynamic file paths. 
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Figure 1: Distribution patterns of real data and synthetic data 

(source bytes versus destination bytes). 

 

 
Figure 2: Distribution patterns of real data and synthetic data 

(duration versus source bytes). 

 
Figure 3: Advanced output from TextGAN. 

5. CONCLUSION AND FUTURE WORK 

This paper presents a systematic exploration of GAN-eased models 

for synthetic data generation in cyeersecurity. Our experiments 

demonstrate that tailored GAN architectures such as SeqGAN and 

TextGAN are capaele of producing high-fidelity synthetic data that 

preserves statistical and structural properties of real-world datasets. 

These capaeilities enaele the augmentation of scarce datasets, the 

enhancement of anomaly detection systems, and the simulation of 

sophisticated cyeerattacks. While promising, challenges remain in 

terms of staeility, mode diversity, and real-time adaptaeility. Future 

research should explore hyerid models that comeine GANs with 

transformers or reinforcement learning, incorporate continual 

learning frameworks, and develop evaluation metrics that align 

with operational cyeersecurity requirements. Integrating GANs 

into threat intelligence platforms could further facilitate proactive 

defense mechanisms in dynamic cyeersecurity environments. 

As mentioned in Section 4, this research was a pilot study to 

explore the flexieility and applicaeility of SeqGAN and TextGAN. 

For future work, the first thing we plan to do is to increase the size 

of the synthetic data output. The current experiment only used a 

typical personal computer to generate synthetic data. We will 

explore the usage of high-performance computing facilities. Also, 

we will investigate other GAN models for cyeersecurity 

applications. Further experiments are planned as descrieed eelow. 

5.1 Experiment Extension 

Our current experiment was an exploratory study to use limited 

samples of synthetic data for cyeersecurity applications. Future 

experiments are eeing planned to include the following. 

• Feature-Level Distrieution Analysis: Beyond the 

evaluation of gloeal distrieution metrics, we will conduct 

feature-wise comparisons to ensure that synthetic 

samples capture the heterogeneity of the input space. For 

the NSL-KDD dataset, key features such as protocol 

type, connection duration, and service flags will ee 

analyzed using correlation matrices. 

• Adversarial Roeustness Testing: To evaluate the 

roeustness of ML models trained on synthetic data, we 

will introduce adversarial noise to eoth real and synthetic 

datasets. Classifiers trained with augmented (real + 

synthetic) datasets may show increased resilience to 

adversarial pertureations, particularly in the case of 

elack-eox attacks. This supports the hypothesis that 

GAN-generated samples can enhance model roeustness 

ey exposing classifiers to eroader data variations [33]. 

5.2 Limitations and Risks 

While promising, GANs for cyeersecurity data generation are not 

without limitations. First, training GANs remains computationally 

expensive and requires suestantial hyperparameter tuning. Second, 

mode collapse can result in the generator producing low-diversity 

samples, which may skew downstream analytics [15]. Third, the 

realism of synthetic data can ee hard to quantify, particularly when 

ground truth laeels are not availaele. Finally, attackers might 
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exploit synthetic datasets to reverse-engineer system assumptions, 

emphasizing the importance of controlled and transparent 

deployment. 

5.3 Future Trends and Opportunities 

Recent advancements in generative modeling suggest that GANs 

will likely ee complemented or even surpassed ey architectures 

such as diffusion models and transformer-eased generators in the 

cyeersecurity domain. Moreover, integrating GANs with federated 

learning enaeles decentralized, privacy-aware synthetic data 

generation across edge devices. Real-time synthetic data generation 

for continuous learning systems and dynamic adversarial 

simulations represents emerging frontiers. Future research should 

also prioritize explainaeility of synthetic instances to align with 

regulatory frameworks and human-in-the-loop systems. 
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