CONTENTS

Page 4 FOREWORD
Kristen Evangelista

Page 6 COORDINATES
Brian Droitcour

Page 12 INTERVIEW WITH BENJAMIN PHELAN
Michael Rees

Page 18 WORKS

Page 38 EXHIBITION CHECKLIST

Page 40 BIOGRAPHY
The William Paterson University Artist in Residency Program, a new collaboration of the Center for New Art and the University Galleries, fosters artistic experimentation and dialogue surrounding technology-based work. The program offers both emerging and mid-career artists pivotal opportunities to produce and exhibit new media art. Artists in residence (AIR) have access to our unique Digital Fabrication Laboratory for the production of 2D and 3D imaging, interactive media, augmented reality, and other emerging forms of digital production. The residency culminates in a solo exhibition at the University Galleries.

WPU Professor Michael Rees initiated the program in 2010 under the auspices of the Center for New Art to serve “the self-starting digital savant who can adopt and adapt to the available technologies.” Past AIR have included Michael Joaquin Grey, Richard Klein, Chris Manzione, and Katy Schmert. Moreover, the program encourages the exchange of ideas through public lectures and interaction with undergraduates and graduate students.

In Spring 2013, the University Galleries and the Center for New Art invited Benjamin Phelan to be an artist in residence. At the time, Phelan was using a hand-held hot wire cutter to carve Styrofoam into human-sized pedestals. Together, Phelan’s works play into our desires for otherworldly sculptures. He was experienced in combining motion capture and computer modeling with low-tech carving tools to create human-sized sculptures such as Earth Pipe Linkspace Conditioner (2013) (pg. 19) are illuminated with pulsing, computer programmed LED lights. The light varies over time, with each LED representing a pixel from a moving image (in the vein of LED artists Jim Campbell, Erwin Redi, and Leo Villareal). Phelan creates a theatrical spectacle, perhaps the influence of his other gigs as a 3D animator in commercial advertising and stage lighting engineer for the band Yeasayer.

Phelan infuses his work with humor, which is most apparent in the sculptures’ titles. Their names conjure pseudo-scientific and the varying sub-cultures who embrace it—hippies yearning for healing crystals, conspiracy theorists seeking zero-point energy, and sci-fi filmmakers envisioning far-fetched technology. He has a penchant for mathematical terms like: “icosagon,” “voronoi,” and “vector.” The wall sculpture Reptoid Hypercolumn (2013) (pg. 27) bears the name of a purported race of reptilian humanoids while the adjoining words convey sculptural and spatial associations. The sculpture itself is rectangular with an organic textured surface and is dramatically lit on a matching Styrofoam pedestal. Together, Phelan’s works play into our desires for disruptive and intelligent influence. The program encourages the exchange of ideas through public lectures and interaction with undergraduates and graduate students.

In Spring 2013, the University Galleries and the Center for New Art invited Benjamin Phelan to be an artist in residence. At the time, Phelan was using a hand-held hot wire cutter to carve Styrofoam into human-sized pedestals. Together, Phelan’s works play into our desires for otherworldly sculptures. He was experienced in combining motion capture and computer modeling with low-tech carving tools to create human-sized sculptures such as Earth Pipe Linkspace Conditioner (2013) (pg. 19) are illuminated with pulsing, computer programmed LED lights. The light varies over time, with each LED representing a pixel from a moving image (in the vein of LED artists Jim Campbell, Erwin Redi, and Leo Villareal). Phelan creates a theatrical spectacle, perhaps the influence of his other gigs as a 3D animator in commercial advertising and stage lighting engineer for the band Yeasayer.

Phelan infuses his work with humor, which is most apparent in the sculptures’ titles. Their names conjure pseudo-scientific and the varying sub-cultures who embrace it—hippies yearning for healing crystals, conspiracy theorists seeking zero-point energy, and sci-fi filmmakers envisioning far-fetched technology. He has a penchant for mathematical terms like: “icosagon,” “voronoi,” and “vector.” The wall sculpture Reptoid Hypercolumn (2013) (pg. 27) bears the name of a purported race of reptilian humanoids while the adjoining words convey sculptural and spatial associations. The sculpture itself is rectangular with an organic textured surface and is dramatically lit on a matching Styrofoam pedestal. Together, Phelan’s works play into our desires for disruptive and intelligent influence. The program encourages the exchange of ideas through public lectures and interaction with undergraduates and graduate students.

In Spring 2013, the University Galleries and the Center for New Art invited Benjamin Phelan to be an artist in residence. At the time, Phelan was using a hand-held hot wire cutter to carve Styrofoam into human-sized pedestals. Together, Phelan’s works play into our desires for otherworldly sculptures. He was experienced in combining motion capture and computer modeling with low-tech carving tools to create human-sized sculptures such as Earth Pipe Linkspace Conditioner (2013) (pg. 19) are illuminated with pulsing, computer programmed LED lights. The light varies over time, with each LED representing a pixel from a moving image (in the vein of LED artists Jim Campbell, Erwin Redi, and Leo Villareal). Phelan creates a theatrical spectacle, perhaps the influence of his other gigs as a 3D animator in commercial advertising and stage lighting engineer for the band Yeasayer.

Phelan infuses his work with humor, which is most apparent in the sculptures’ titles. Their names conjure pseudo-scientific and the varying sub-cultures who embrace it—hippies yearning for healing crystals, conspiracy theorists seeking zero-point energy, and sci-fi filmmakers envisioning far-fetched technology. He has a penchant for mathematical terms like: “icosagon,” “voronoi,” and “vector.” The wall sculpture Reptoid Hypercolumn (2013) (pg. 27) bears the name of a purported race of reptilian humanoids while the adjoining words convey sculptural and spatial associations. The sculpture itself is rectangular with an organic textured surface and is dramatically lit on a matching Styrofoam pedestal. Together, Phelan’s works play into our desires for disruptive and intelligent influence. The program encourages the exchange of ideas through public lectures and interaction with undergraduates and graduate students.

In Spring 2013, the University Galleries and the Center for New Art invited Benjamin Phelan to be an artist in residence. At the time, Phelan was using a hand-held hot wire cutter to carve Styrofoam into human-sized pedestals. Together, Phelan’s works play into our desires for otherworldly sculptures. He was experienced in combining motion capture and computer modeling with low-tech carving tools to create human-sized sculptures such as Earth Pipe Linkspace Conditioner (2013) (pg. 19) are illuminated with pulsing, computer programmed LED lights. The light varies over time, with each LED representing a pixel from a moving image (in the vein of LED artists Jim Campbell, Erwin Redi, and Leo Villareal). Phelan creates a theatrical spectacle, perhaps the influence of his other gigs as a 3D animator in commercial advertising and stage lighting engineer for the band Yeasayer.

Phelan infuses his work with humor, which is most apparent in the sculptures’ titles. Their names conjure pseudo-scientific and the varying sub-cultures who embrace it—hippies yearning for healing crystals, conspiracy theorists seeking zero-point energy, and sci-fi filmmakers envisioning far-fetched technology. He has a penchant for mathematical terms like: “icosagon,” “voronoi,” and “vector.” The wall sculpture Reptoid Hypercolumn (2013) (pg. 27) bears the name of a purported race of reptilian humanoids while the adjoining words convey sculptural and spatial associations. The sculpture itself is rectangular with an organic textured surface and is dramatically lit on a matching Styrofoam pedestal. Together, Phelan’s works play into our desires for disruptive and intelligent influence. The program encourages the exchange of ideas through public lectures and interaction with undergraduates and graduate students.

In Spring 2013, the University Galleries and the Center for New Art invited Benjamin Phelan to be an artist in residence. At the time, Phelan was using a hand-held hot wire cutter to carve Styrofoam into human-sized pedestals. Together, Phelan’s works play into our desires for otherworldly sculptures. He was experienced in combining motion capture and computer modeling with low-tech carving tools to create human-sized sculptures such as Earth Pipe Linkspace Conditioner (2013) (pg. 19) are illuminated with pulsing, computer programmed LED lights. The light varies over time, with each LED representing a pixel from a moving image (in the vein of LED artists Jim Campbell, Erwin Redi, and Leo Villareal). Phelan creates a theatrical spectacle, perhaps the influence of his other gigs as a 3D animator in commercial advertising and stage lighting engineer for the band Yeasayer.

Phelan infuses his work with humor, which is most apparent in the sculptures’ titles. Their names conjure pseudo-scientific and the varying sub-cultures who embrace it—hippies yearning for healing crystals, conspiracy theorists seeking zero-point energy, and sci-fi filmmakers envisioning far-fetched technology. He has a penchant for mathematical terms like: “icosagon,” “voronoi,” and “vector.” The wall sculpture Reptoid Hypercolumn (2013) (pg. 27) bears the name of a purported race of reptilian humanoids while the adjoining words convey sculptural and spatial associations. The sculpture itself is rectangular with an organic textured surface and is dramatically lit on a matching Styrofoam pedestal. Together, Phelan’s works play into our desires for disruptive and intelligent influence. The program encourages the exchange of ideas through public lectures and interaction with undergraduates and graduate students.
Benjamin Phelan’s sculptures look like monuments, or fragments of architecture. But they don’t do everything that monuments do.

Phelan’s *Lenticular Icosagon Reaction Funnel* (2013) (pg. 21) is big. It is white, like the marble that some monuments are made of. The crests and rivets that wind along its otherworldly body speak to the subtractive labor of sculpture, the work of carving into marble or other stone. Its body rests on a grounded base. Yet it is also unlike a monument. Its shape—irregularly bulbous and curved—is alien. It does not belong to life now and never did in the past. Perhaps it belongs to the future; the name of the work suggests a tool, an element in a complex technology that has not been invented yet, rather than a person or an event that made history and its base, too, is tool-like—faceted like the head of a bolt. A monument, though otherworldly, appeals to human aspirations and dreams; it is at least part human. Phelan’s sculpture is wholly inhuman. Its substance is synthetic. The white color of its body isn’t marble; it’s Styrofoam, and the weight implied by its size is belied by the lightness of the material. Styrofoam makes the work hard to think of as a monument because nothing made of Styrofoam is made to last. Marble lasts eons; monuments of marble situate human history in geological time. Styrofoam is the stuff of consumer-goods packaging. It relates sculpture to the everyday cycles of goods and garbage, purchase and disposal.
to be made at a budget that can’t cover individual artisanal labor. Milling machines are also used by the studios of artists like Jeff Koons and Paul McCarthy, who draw inspiration from those pop forms. The milling machine at WPU is not a high-end commercial model. It’s not for producing highly refined sculptures, but for learning how it is done. It may not be the ideal tool for every artist, but Phelan is interested in speculating about the technology’s potential rather than exploiting the cutting edge of its capabilities, and so for him the machine at WPU is a perfect match.

While milling machines can work with a variety of materials, including wood and steel, the Center for New Art at WPU limits the material it uses to four-inch planks of Styrofoam. Cheap and easy to cut through, Styrofoam is a low-risk material. Styrofoam is the common name for expanded polystyrene, a synthetic polymer foam of friable beads extruded into brittle slabs. Extrusion creates objects from a two-dimensional profile, by pushing material through a cross-sectional die. It is like drawing and it produces a volume—in fact, extrusion is also a term used in modeling programs, when a line drawn is translated into a volume—as happens when a sphere drag produces a model in Phelan’s motion-capture software. Extrusion as an industrial process that produces Styrofoam, extrusion as the means of manipulating it via the computer—the rhyme of the two processes in the WPU context is an accident, but it points to a fluidity of protocols across modes of production that interests Phelan.

It’s the machine, not Phelan, who directly touched Styrofoam to make the sculptures in the artist’s latest series, and yet by operating the machine, Phelan still had plenty of contact with Styrofoam’s substance.
mistakes and errors. Signals misalign, producing tangible interference and noise as the machine tries to work around instructions it can’t understand, adding elements that it thinks needs to be there. Phelan talks about using the machine as measuring human wit against artificial intelligence—coming up with ways to outsmart the mill so it does exactly what he needs it to do. The artist is the machine’s assistant, and its rival.

Before he came to WPU, Phelan had limited experience working at this level of abstraction from the physical process of making art. He had experimented with 3D printing but found the relationship of cost to scale ineffective. For the most part, Phelan has worked on computer models of objects, and he has made sculptures, and though formal similarities occurred in his work across these two mediums, the processes were wholly separate. He drew the models in the computer and he sculpted the objects by hand, sanding the surfaces and doing the rest of the painstaking work himself. Now that the milling machine has made it possible to collapse those mediums in a single, abstracted process, Phelan continues to work at the surface of his sculptures without a direct touch.

Earth Pipe Linkspace Conditioner (2013) is one of the sculptures with a custom LED system installed in its base. The prismatic lighting system continuously modulates the way the sculpture is seen—it mediates the surface with the time of the viewer’s gaze, just as the milling machine’s contact with the slab is mediated by the haptic technology of the modeling software that determines the drill bit’s movement along a set of coordinates.

Earth Pipe Linkspace Conditioner is one of Phelan’s works that recalls the things you find in an encyclopedic museum—slab-like tablets, scored fragments of friezes, a monumental body on a base—but with unfamiliar contours and surfaces. It is a skeletal catacomb with viscous-looking walls; the branching beams of its interior gather in a loose pyramid. It echoes the relief of Cosmic Voronoi Vision Sys (2013) (pg. 26), in which tubes emerge from the surface and mingle like worms after rain. It’s strange, even alien, but if it recalls a relic of an alien civilization it is because the piece is commensurable with the size and shape of human relics. The ground of a tubed frieze panel in Alias Protocol Haptic Array (2013) (pg. 24), looks like convenience store shelving—a system of display that aspires to universality, to be open to holding anything. And the beveled geometric patterns that web its surface are inspired in part by Phelan’s research into the structure of the central cortex—the visual forms built into its synapses that are revealed when you rub your eyes, or suddenly move from a dark space to a bright one, or ingest hallucinogenic drugs. Protocols of the body—the controls of fundamental, unseen levels of sensory perception—operate here as reminders of sculpture and architecture as universal functions—how bodies experience what is situated beyond them, through the networks inside them.

A monument commands attention because it fuses in one object values and bodies, ideas and form—the human condition of balancing the worldly and the other worldly, in a thing that can be seen and touched. But the tangible is less impressive now when images on screen command the greatest attention. Objects are disposable and easily reproduced and replaced. Objects belong to the purview of machines, not people. Forms of attention cleave away from objects and regroup in bodies; objects of attention mutate in forms of control. Apple with its touchpads and Google with its movement controls for Glass are branding gestural environments, just as Facebook branded the interior structure of making friends. As the ephemeral experience and gesture are bound to each other in systems of managing the body’s relation to its physical environments, and its social, affective ones, objects become a waste product, like crumbs of Styrofoam. Phelan’s emptied out monumental fragments resist empathy, with alien shapes and the forbidding strings of words in the title; they direct attention instead to their material, to a speculation about the process by which they were made. They open up reflection on universal technologies of making and seeing.
MICHAEL REES: When I first encountered your work, I was drawn to the way you play with ‘the real’. At that time, your physical sculptures looked as if they had been carved or excreted by some alien machine. As it turns out, you made them by hand. How did this residency affect this play between how things are made and the way they appear?

BENJAMIN PHELAN: The residency expanded the processes I use to make drawings from sculpted computer models. Previously, I used a pen plotter machine to diagram the wireframe topography of models in two-dimensional arrays, like teaching a TV to make an image. The CNC milling process, which I learned during the residency, follows the same type of vector layered form building, but adds another dimension—the model is now a fully mapped object. When you look up close at the surface of the CNC carved sculptures and panels, they break down into a single system of encircling drill lines, strata encoded into the depth of a Styrofoam block.

I am intrigued by what the machine is seeing as it translates my motions into form. How does my signal interfere with its process? This question can be asked along...
the entire industrial pipeline of software my information passes through. I’ve tried to adopt their vision systems, carrying out similar processes by hand. Instead of pushing a digital sphere up through the surface of a computer model and then milling it away, I hold a circular vector of chemical afterimages. We don’t have a manufacturing base anymore. We have an image consumption system.

I use a motion capture system with haptic feedback to sculpt computer models. The decades old software marketed as a virtual clay “experience” incorporates a motorized hardware device, resembling a small robot arm, holding a stylos, to simulate the sensation of touching a soft model. I take advantage of the ambiguous rules defining the process to work from the inside of the clay, experiencing accurate tension on the stylus as I push a virtual sphere against its external surface, until it gives way to sculpt computer models. The decades old software process and it extends into the material that you choose. The foam surface begins to disintegrate with every ding, but even so it has longevity. The foam surface begins to disintegrate with every ding, but even so it has longevity.

I think the instability is an important part of your process and it extends into the material that you choose. The foam surface begins to disintegrate with every ding, but even so it has longevity.

In some sense the file that corresponds to the foam is permanent; it is a set of points in space. If foam is damaged does it add to the instructions or is a new set of motion information overlaid on the pattern? Styrofoam is a material that is both disposable and non-biodegradable. Its nearly instant production delineates space as commodity, but limits its work to a certain type of limitlessness. Its consistency allows vast amounts of information in, but the uniformity of technique masks the edges of the system that eventually seal off the work. Ceramic seems to have become emblematic of this state of inescapable freedom.

The early history of video provides a model for questioning technologies, expanding their boundaries. Artists mapped the limits imposed on the body in that new space and extended those relationships to other commercial industries. Bruce Nauman manipulated a florescent tube and then advertisement neon, and Paul McCarthy heaved through a paint bucket and then made cinematoses.

The sculptures have a “Milk Bar” feel— somehow evoking Stanley Kubrick and his film Clockwork Orange (1971), but without human representation. It might be a porn space, but it’s actually a kind of information porn space. A geek would come in and say, “Oh my god!” And there’s something terrifying about it, violent even.

I’ll admit to being that geek, attracted to systems that openly display their data. The enclosing material and techniques are uniform, simple enough to see through to the motion of the trapped recorded actions. Like looking at a crystal, they have a certain inescapable logic that is involuntarily reenacted. The Icosagon rotation forms especially. They spin around and around, reducing a body scale motion to a series of intersecting boundary planes — light trapped inside a prism.

BP: Foam, foam, foam. All you need is foam? Supplemented by software and process?

MR: Yes, it’s bound to happen. The image is an anomaly. We don’t have the tools to dispose what we see. There’s no biological basis for being able to tell what a two-dimensional image is. Producing sculpture with information systems extends that instability into multiple spaces.

BP: I think the instability is an important part of your process and it extends into the material that you choose. The foam surface begins to disintegrate with every ding, but even so it has longevity.

MR: True enough. We built it; we deserve it!

BP: It takes generations of technology building upon itself. It’s a seductive space that opens up. Each new technology for sculpting 3D forms ignites an aesthetic subculture with the promise of infinite malleability, but limits its work to a single technique. The curving bubbles of fiberglass reins in the ’60s, the polygon primitive of early computer graphics in the ’90s, or the parametric Voronoi lattices of the present. 3D printing boom — I’m interested in techniques that offer limitless form within the enclosure of heterogeneous control. Anything that is totally uniform opens a certain type of limitlessness. Its consistency allows vast amounts of information in, but the uniformity of technique masks the edges of the system that eventually seal off the work. Ceramic seems to have become emblematic of this state of inescapable freedom.

The aftermath of modernism, abstraction as a universal system of technical control, the production of objects of desire, the recognition of recurring forms as derived from structures of neurobiology, the use of 3D models to show pattern signals of communication, and equivalence.

BP: Is there definitely a strange confusion when you view the objects. They look screen-based. Pictures of them would return them to that virtual state, right?

MR: What themes are most important to you in this work?

BP: The aftermath of modernism, abstraction as a universal system of technical control, the production of objects of desire, the recognition of recurring forms as derived from structures of neurobiology, the use of 3D models to show pattern signals of communication, and equivalence.

BP: There’s definitely a strange confusion when you view the objects. They look screen-based. Pictures of them would return them to that virtual state, right?

MR: BP: What themes are most important to you in this work?

BP: The aftermath of modernism, abstraction as a universal system of technical control, the production of objects of desire, the recognition of recurring forms as derived from structures of neurobiology, the use of 3D models to show pattern signals of communication, and equivalence.

BP: There’s definitely a strange confusion when you view the objects. They look screen-based. Pictures of them would return them to that virtual state, right?

MR: What themes are most important to you in this work?

BP: The aftermath of modernism, abstraction as a universal system of technical control, the production of objects of desire, the recognition of recurring forms as derived from structures of neurobiology, the use of 3D models to show pattern signals of communication, and equivalence.
I think the Clockwork Orange reference is right on, within the work there is an image of modernist design as utopian social programming that reached its pinnacle in the '70s with these highly plastic forms. I was very influenced by the biomorphic sculptures of Henry Moore, and the way they plotted the future for Britain by re-forming the body into a bulbous shell of industrial pneumatic motion. His influence seemed to defray a national campaign for a bi-aesthetic future, leading to Archigram group’s design of inflated megastructure city machines populated by networks of programmed human modules that resemble the future as depicted in Clockwork Orange.

MR: You play with perception a bit in these works: the lights and their multicolor gradations flickering upon your surfaces. You play with this more in the moiré drawings. Is this a kind of common space of human perception? Why do you use so much opticality?

BP: The history of optical art left an impression on me, a movement whose discoveries opened up perceptual mechanisms to commercial control. This art has been repurposed to serve popular needs; showing my work in commercial capacities such as rock show stage lighting has reinforced this idea.

Beyond that, I am deeply fascinated with the divide between perception and the biological mechanisms that generate it. Researching the automatic visual forms experienced in hallucinations and light flicker as an origin for abstraction, I found entopic phenomenon. People who experience hallucinations and migraines similarly describe seeing swirling lattice structures of grids, honeycombs, and parallel lines. These visionary perceptions could be described as signal transformations along the crystal-like geometry of neurons in the visual cortex. Related to the Jungian concept of Collective unconscious, this physical base of involuntary production informed my use of automatic drawing processes to describe the archaic limits of an evolved vision system as an embodied universal realm.

MR: Your work also flirts with conspiracy. As wacky as this is, it seems consistent with the way you play with physical and virtual form and the way you wonder about its veracity.

BP: I had recently been reading about conspiracy thinking, in which associations seem to align in the form of external agency, but in reality what is revealed is only a mapping of one’s own anthropomorphic and personal bias. My theories surrounding bi-mimicry and foam certainly seem to fit this conspiracy type logic.

I am intrigued by the alternative science community; their conviction-driven irrational explorations and the non-functional devices they create seem parallel to making technology-based art. These pseudoscientists open new interpretations of processes, based not on fact, but what they want to happen. Orgone energy accumulators and color therapy light projectors are devices that function only by propagating belief.

Researching the physics of empty space, I came across free-energy devices proposing to extract unlimited energy from the quantum foam of space with zero-point energy. These same devices are claimed to power UFOs. Zero-point energy shaped the way I think about Styrofoam as a substance enclosing multiple social, structural, insulating, and radiating properties. I think making a sculpture seems to require a continuous reaffirmation of some type of belief system until some point when it becomes self-fulfilling and the connections embedded within it can be seen like a type of conspiracy revelation.

MR: What’s strange is that you go all out for the reality of this space, yet you’re always mindful and aware that it’s a fictive space, and it’s funny, too.

BP: These works are accumulations of opposing states: model and image, technology and nature, culture and biology, history and fiction. We evolved laughter to rapidly toggle the dual-brain hemisphere switch, allowing us to hold both states at once. Humor is a path I follow while developing these processes that involve role reversals and misaligned competing representations, setting up a suspension of circling associations. The process is an irrational task, but I believe it entirely. The institutional forms of the work are also funny. There is a droll modernist literalism enabled by technology; a computer model “image-processing pipeline” reduces sculptural processes to a default commercial system, packaging the sausage of gestural abstraction. The universal unconscious is translated as the automatic feedback of a biological vision system in breakdown with a device designed to emulate the essence of touch. The works consume and excrete their vision as a floating sphere, dragged in an endless campaign to replicate through all space.
Earth Pipe Linkspace Conditioner - 2013
Expanded polystyrene, custom LED lighting system
68 x 29 x 24 3/4 inches
Exo Spectral
Vector Grating - 2013
Expanded polystyrene, custom LED lighting system
67 ½ x 24 x 24 ¼ inches

Lenticular Icosagon
Reaction Funnel - 2013
Expanded polystyrene
76 x 16 x 16 inches
Omni Column Empath
Eicosagon - 2013
Expanded polystyrene
custom LED lighting system
75 x 24 x 24 inches
Alias Protocol
Haptic Array • 2013
Expanded polystyrene
40 x 32 x 2 ½ inches

Anti-EPPA • 2013
Expanded polystyrene
18 x 17 3/8 x 8 inches
Cosmic Voronoi
Klein Aye • 2013
Expanded polystyrene
40 ¼ x 32 ¼ x 2 ½ inches

Crystal Grid
Generation Prism • 2013
Expanded polystyrene
40 ¼ x 32 ¼ x 2 ½ inches
Internal Dimension
Depth Plate • 2013
Expanded polystyrene
40 x 32 x 2 ½ inches

Grey Goo File Image
Render Set • 2013
Monochrome laserjet prints, expanded polystyrene
63 x 69 inches
PWEVZ (Paterson Woods Encounter Vortex Zone) • 2013
Expanded polystyrene, monitor, media player
Video loop, 18.54 minutes

Reptoid Hypercolumn Planform • 2013
Expanded polystyrene
40 x 32 x 2½ inches
Static Charge Theta
Emulsion - 2013
Expanded polystyrene
40 x 32 x 2 1/2 inches
Vik M. Lamellar Habit
Prism - 2013
Ballpoint pen on paper in artist made frame
14 x 12 inches

Vik A. Blank
Tile - 2013
Ballpoint pen on paper in artist made frame
9 x 9 inches
VAA Blank

Tile G • 2013
Ballpoint pen on paper in artist made frame
9 x 9 inches

Tile R • 2013
Ballpoint pen on paper in artist made frame
9 x 9 inches
FLOOR WORKS

- Earth Pipe Linkspace Conditioner • 2013
 Expanded polystyrene, custom LED lighting system
 68 x 29 x 24 1/2 inches
 Produced at the Center for New Art, William Paterson University

- Exo Spectral Vector Grating • 2013
 Expanded polystyrene, custom LED lighting system
 67 1/2 x 24 x 24 1/2 inches
 Produced at the Center for New Art, William Paterson University

- Lenticular Icosagon Reaction Funnel • 2013
 Expanded polystyrene
 76 x 16 x 16 inches

- Omni Column Empath Icosagon • 2013
 Expanded polystyrene, custom LED lighting system
 75 x 24 x 24 inches

WALL WORKS

- Alias Protocol Haptic Array • 2013
 Expanded polystyrene
 40 x 32 x 2 1/2 inches

- Anti ERP • 2013
 Expanded polystyrene
 18 x 17 3/8 x 8 inches

- Cosmic Voronoi Vision Sys • 2013
 Expanded polystyrene
 40 1/4 x 32 1/4 x 2 1/2 inches
 Produced at the Center for New Art, William Paterson University

- Crystal Grid Oriention Prism • 2013
 Expanded polystyrene
 40 1/4 x 32 1/4 x 2 1/2 inches
 Produced at the Center for New Art, William Paterson University

- Internal Dimension Depth Plane • 2013
 Expanded polystyrene
 40 x 32 x 2 1/2 inches

- Grey Goo File Image Render Set • 2013
 Monochrome laserjet prints expanded polystyrene
 63 x 69 inches

- PWEVZ (Paterson Woods Encounter Vortex Zone) • 2013
 Expanded polystyrene, monitor, media player. Video loop, 18:54 minutes

- Reptoid Hypercolumn Planform • 2013
 Expanded polystyrene
 40 x 32 x 2 1/2 inches
 Produced at the Center for New Art, William Paterson University

- Static Charge Theta Emission • 2013
 Expanded polystyrene
 40 x 32 x 2 1/2 inches

DRAWINGS

- VAA Lamellar Habit Primer • 2013
 Ballpoint pen on paper in artist made frame
 14 x 12 inches

- VAA A Blank Tile B • 2013
 Ballpoint pen on paper in artist made frame
 9 x 9 inches

- VAA A Blank Tile G • 2013
 Ballpoint pen on paper in artist made frame
 9 x 9 inches

- VAA Blank Tile R • 2013
 Ballpoint pen on paper in artist made frame
SOLO EXHIBITIONS

2012
Vitalistic Aliasing, Primetime, Brooklyn, NY

SELECTED GROUP EXHIBITIONS

2012
Style Is the Tailor, American Medium, New York, NY
Y A S 2, Primetime, Brooklyn, NY
Knowledge of the True Games, Know More Games, Brooklyn, NY

2011
Y A S, Primetime, Brooklyn, NY
Festival of Lights: America, Know More Games, Brooklyn, NY
Vernalia, North Henry Annex, Brooklyn, NY

2010
Philadelphia Out of Phase, Bodega Gallery, Philadelphia, PA
Horror Vacui, Nudashank Gallery, Baltimore, MD

2009
PIFAS PLACE, Philadelphia Institute for Advanced Study, Philadelphia, PA
GIANT SALE, A.P.E. Ltd. Gallery, Northampton, MA

2008
Babe’s on 27th, Foxy Production, New York, NY
Philadelphia, PA

LIGHT DEVICE PERFORMANCE

2010

2009
“Space Balls 2,” light device performance with Yeasayer, Guggenheim Museum, New York, NY

2008
“Space Balls,” light device performance with Yeasayer, North America and Canada
“Cool Devices,” light device performance with Yeasayer on NBC Late Night, New York, NY

2007
“Cubic Crosses,” light device performance with Yeasayer, New York, NY

2006
“Salad Days 2006,” Artists Space, New York, NY

RESIDENCY

2012
School of Visual Arts, New-Media Summer Residency Program, New York, NY

BIBLIOGRAPHY

2011

2010

2009
This catalogue is published in conjunction with the exhibition, Energy Lattice: Benjamin Phelan, organized by the University Galleries, William Paterson University, and on view September 9 – October 18, 2013.

© 2013 University Galleries, William Paterson University. All rights reserved. No part of this book may be reproduced in any form without written permission from the publisher.

Published by the University Galleries, William Paterson University.
300 Pompton Road, Wayne, NJ 07470

EDITING
Regina Pappalardo

DESIGN
Thomas Uhlein
Typography: Intro (text), and Unicod (headlines)

PRINTING
Grandview Printing, Totowa, New Jersey

PHOTOGRAPHY
All photography courtesy of Jason Mandella.
ISBN: 978-0-9856989-0-0

University Galleries
WILLIAM PATERN UNIVERSITY
Ben Shahn Center for the Visual Arts
300 Pompton Road, Wayne, NJ 07470
http://www.wpunj.edu/coac/gallery/

Kristen Evangelista • Director
Emily Johnsen • Program Assistant

This exhibition catalogue is made possible by a grant from the Elizabeth Firestone Graham Foundation.

The artist would like to thank Poly Molding for their generous support.

This exhibition was made possible in part by funds from the New Jersey State Council on the Arts, a Partner Agency of the National Endowment for the Arts.
Installation view, Energy Lattice, Benjamin Phelan, William Paterson University Galleries. 2013