
CHARLES H. FRANKE
MEMORIAL LECTURE

Charles H. Franke Memorial Lecture, Seton Hal l University , 2024
UPS Lecture Ser ies, Wil liam Paterson University, 2021

UPS Lecture--William Paterson University--April 16 2021

Some reminiscences of Charlie Franke

◦ I’ve posted some memories of Charlie and his influence on me and my

academic career

◦ I’ll just mention two

◦ Teaching from memory

◦ Charlie never used notes

◦ Only once did he go back to his office for 5 mins to consult

◦ Going back for CS

◦ As the department expanded to include CS, Charlie went back for an MS

◦ He then encouraged me, which started me on the road that led here

Charles H Franke Lecture—Seton Hall University--April 26 2024

FOUR RULES OF
SOFTWARE

ENGINEERING
Thomas Marlowe, Seton Hall University

UPS Lecture Series—William Paterson University

Note

◦ Presentation is oriented toward computer science and software

development

◦ Not hard to translate much of it into guidelines for the process of

◦ Mathematical modeling

◦ Statistical modeling and design of experiments

◦ A data science/data analysis application

◦ Interacting with generative AI and prompt engineering to solve a

problem

◦ Further brief discussion at end of presentation

Charles H Franke Lecture—Seton Hall University--April 26 2024

RULE 1

It Doesn’t Start with the Coding

Providing a context

Charles H Franke Lecture—Seton Hall University--April 26 2024

A software development problem

◦ Sort a set of student records

◦ Student name, campus ID,

 major code, number of credits, GPA

◦ Plus list of current courses

◦ Each course has identifier, name,

 instructor, number of credits

◦ Simple enough that we can try to do it as a single development

step

Charles H Franke Lecture—Seton Hall University--April 26 2024

A software development problem

◦ What do you need to know?

◦ Assume that there are no external constraints on

◦ Programming language, IDE, tools, other resources

◦ Development methodology or team structure

◦ Except as affected by the problem itself,

 or by testing requirements

◦ So don’t consider

◦ Suggestions?

Charles H Franke Lecture—Seton Hall University--April 26 2024

How did I get my list (and my lecture)?

◦ Not fully formed just by looking and writing

◦ Teaching SW engineering, data structures,

 databases, statistics, …, for years

◦ Learning from texts, professional books & blogs,
conference papers & posters

◦ Interaction with colleagues and with students

◦ Repeated reflection and modification

◦ At least 50 content changes in this deck from
first development to this presentation

◦ It would probably change more if I had more
time

Charles H Franke Lecture—Seton Hall University--April 26 2024

Some questions—Input

◦ How many records? How big is each record? Does size vary?

◦ Do we have all the records at the start?

◦ Where do we get the records?

◦ Local or remote file/files

◦ Received individually (user input, streams, …)

◦ Can records be modified, or are they fixed?

◦ Same order, encoding and meaning for fields?

◦ Is input assumed legitimate (type and range consistent, etc.), or do we need
to check?

◦ User interface—¿Solamente en ingles?

• Affects choice of sorting
algorithms and data structures

• Affects design of interfaces

• With modification may want
database

• May require preprocessing

Charles H Franke Lecture—Seton Hall University--April 26 2024

Some questions—Processing

◦ What are we sorting on?

◦ ID #, Name, other, user selection? A tuple (major, ID)?

◦ Single pass or repeated—interacts with static or dynamic data set

◦ Do we need to keep the original data set in original order?

◦ What do we do with duplicate records?

◦ Same exact information, refinements (same or missing), clearly same but
newer, conflicts for same key

◦ What do we do with invalid data?

◦ Invalid records, invalid fields, constraint violations

Charles H Franke Lecture—Seton Hall University--April 26 2024

Some questions—Output

◦ How should the results be presented?

◦ Local/remote monitor(s), local/remote file

◦ Can the user filter the results?

◦ How should accessibility be handled?

◦ If output is presented, what report/display structure is required?

◦ Will all the output be available to every viewer?

◦ If output is stored, what structure should be used?

◦ Does the output need to be preserved?

◦ Very important if input is dynamic or modifiable—timestamps

◦ What needs to be done for accessibility?

Charles H Franke Lecture—Seton Hall University--April 26 2024

Some questions—Security

◦ Security and related topics

◦ Is the data subject to

 privacy/confidentiality constraints?

◦ Should fields be suppressed/transformed

 in display of results?

◦ Do we need extra security for
storage/computation/communication?

◦ If either input or output are stored, should they be encrypted?

◦ Is access control/validation needed on inputs?

◦ Is validation needed to view output?

Charles H Franke Lecture—Seton Hall University--April 26 2024

Some questions—Other concerns

◦ Other extra-functional constraints
◦ Are there criteria for quality, availability, timeliness, …?

◦ Does there need to be documentation, a user manual, …?

◦ Are there ethical or social issues? Legal issues?

◦ Meta-questions

◦ How long is this application going to last?

◦ Are we responsible for fixing problems?

◦ Are we going to need to extend this?

◦ Is this for internal use, for a client, or for sale?

◦ How much documentation/help will we have to provide?

Not all of these

are fully germane

for this problem

Charles H Franke Lecture—Seton Hall University--April 26 2024

RULE 1

It Doesn’t Start with the Coding

The Bigger Picture

Charles H Franke Lecture—Seton Hall University--April 26 2024

BE PREPARED

It isn’t just getting the credential!

Charles H Franke Lecture—Seton Hall University--April 26 2024

The Long View—Preparing for a Career

◦ Technical knowledge
◦ Programming, IDEs, software engineering

 (traditional, Agile, DevOps)

◦ Data structures, algorithms, databases,

 networks, operating systems, …

◦ AI and Data Science

◦ Professional competencies
◦ Communication, teamwork, leadership, empathy, ethics, standards

◦ Critical thinking, problem solving, brainstorming, learning to learn

◦ CS or math has prepared you very well
◦ Coursework, team projects, undergraduate research, internships

◦ Projects become “bigger”, and so has your responsibility within them

Charles H Franke Lecture—Seton Hall University--April 26 2024

◦ Understand your responsibilities

◦ To your employer, your customer, your fellow workers,

 the software development community, and society

◦ And the responsibilities others have toward you

◦ ACM Code of Ethics (https://www.acm.org/code-of-ethics)

◦ ACM Code of Software Engineering Ethics

 https://ethics.acm.org/code-of-ethics/software-engineering-code/

◦ Combine generalist skills with developing a specialty

◦ Consider professional memberships and certifications

Charles H Franke Lecture—Seton Hall University--April 26 2024

Code of

Conduct

The Long View—Preparing for a Career

https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/

The Enterprise View—Working Together

◦ You’re going to work in a context

 and with others

◦ Understand the company

◦ And its management and technical processes,

 at least at a high level

◦ Understand job responsibilities (and be willing to change)

◦ Understand team structure and practices

◦ Be willing and able to cooperate for success and team building

Charles H Franke Lecture—Seton Hall University--April 26 2024

The Work View

◦ OK, you’ve got a job as a software developer (Hooray!)

◦ You’re working on a large project with a team

◦ Perhaps communicating with other teams

◦ The method may be agile, traditional, hybrid, or specialized

◦ So, we can just start coding?

◦ Well …

Charles H Franke Lecture—Seton Hall University--April 26 2024

LOOK BEFORE YOU LEAP

Make sure there’s water in the pool!

Charles H Franke Lecture—Seton Hall University--April 26 2024

The Project View—Before we start

◦ Should we be doing this at all?

◦ Does it fit with our expertise and business goals?

◦ Do we have the resources and training?

◦ If for a customer,

 do we feel comfortable in the relationship?

◦ Do we know what the problem is doing—large scale?

◦ Product Vision

◦ What problem is it trying to solve, and how will it try to solve it?

◦ Business Case

◦ How does the solution fit with our business? With the customer’s?

Charles H Franke Lecture—Seton Hall University--April 26 2024

The Project View—Before we start

◦ Do we have the right resources?

◦ Time and money

◦ Personnel

◦ Training and support

◦ Experts as needed

◦ Tools—for development, for management, for communication

◦ Do we have the right team? Do we have the right process?

◦ Do we have management backing on project, process, and product?

Tradeoffs in when we investigate,

when we stipulate,

and when we acquire resources

Don’t expect full answers right away

Charles H Franke Lecture—Seton Hall University--April 26 2024

The Project View—Before we start

◦ What risks might we face?

◦ To project, process, product, personnel

◦ External risks and catastrophes

◦ Do we have an RMMM plan and structure?

◦ Monitor, manage, and mitigate risk

◦ Management task with technical input

◦ Avoid or prevent if possible

◦ Mitigation—recovery, reduction, restoring morale and productivity, …

More tradeoffs—but

Must anticipate major risks

Must set up structure

Charles H Franke Lecture—Seton Hall University--April 26 2024

The Project View—Artifacts and Views

◦ Each workflow produces both informal and formal artifacts

◦ Code is one—and incorporates others like comments

◦ Others come from tools or analyses—like unit test reports

◦Artifacts may need views

◦ Role Team, management, customer,

 users, operators/helpdesk

◦ Level Precis, overview, details

◦ Aspect Behavior, interfaces, security & privacy, timeliness, …

◦ Understand what belongs/will be found where

Charles H Franke Lecture—Seton Hall University--April 26 2024

AND GET TO WORK

You may specialize, but you need a global view

Charles H Franke Lecture—Seton Hall University--April 26 2024

Requirements—Understand the problem

◦ What do we need to know at the start (of this pass)?

◦ What definitely needs to be considered?

◦ What must be done? What are its interactions?

◦ What’s going to be hard? Tricky? Uncertain?

◦ Subject to frequent change?

◦ How does it need to do it? What about

◦ Security, privacy/confidentiality, intellectual property?

◦ Timeliness and safety (active systems), availability, resilience, performance?

◦ Business & technical services—accounting & inventory, logging & access?

◦ Support—manuals, documentation, on-line, accessibility, …?

◦ What legal, standards, and ethical issues may arise?

Charles H Franke Lecture—Seton Hall University--April 26 2024

Requirements—Understand the problem

◦How does this add value for the customer? The user?

◦ For example

◦ Behavior Increased functionality

 Better performance, reliability/resiliency, …

◦ Interaction Improve or add interfaces & improve accessibility

 Better understandability, usability, aesthetics

 Reduce annoyance/inconvenience

◦ Extensibility Support additional platforms

 Improve internationalization, interoperability

 Address product line consistency

Charles H Franke Lecture—Seton Hall University--April 26 2024

Requirements—Understand the
problem
◦ How do we learn about requirements?

◦ Discuss and listen

◦ Read (regulations, standards, terminology,

 common practice, …)

◦ Observe

◦ Check interpretation vs problem & w/ customer (!)

◦ And end users/operators if possible

◦ Test if possible

◦ What about problems and constraints?

◦ What is missing? What works poorly?

◦ What has gone wrong? How and why?

◦ Are we introducing new concerns?

◦ What needs to be guaranteed?

Charles H Franke Lecture—Seton Hall University--April 26 2024

Specification—Understand the workings

◦ How do the business processes work?

◦ Happy path(s)—when everything goes right

◦ Alternative flows—variants and options

◦ Handling special cases, exceptions, errors — existing and new

◦ Our product may provide same services very differently

◦ What needs special attention?

◦ Try to capture implicit assumptions and tacit knowledge

◦ Understand concurrency/non-determinism in problem

◦ What can happen in parallel? In different order?

◦ Where is security an issue? Where are the bottlenecks? Precise timing?

Emphasize

when unclear, tricky,

or complicated

Charles H Franke Lecture—Seton Hall University--April 26 2024

Modeling—Understand the structure

◦ Isolate real-world entities and interactions

◦ Some entities are not physical —

 transactions, meetings, …

◦ Create conceptual objects and

 information flows to handle

◦ Effort focused on less-than-obvious translations &c

◦ Include (at least) security, privacy, timing, safety, accessibility from start

◦ Need not be fully implemented

◦ But need to be aware and leave flags and hooks

◦ Be aware of points of fragility—Where can this break?

Charles H Franke Lecture—Seton Hall University--April 26 2024

Design—Understand the solution

◦ The application world is a model of the model

◦ Make a further translation to that model

◦ Create skeleton for method code

◦ Decide on algorithms and data structures

◦ Use design patterns, guidelines, and idioms

◦ May modify modeling/domain level, largely in predictable ways

◦ Example: materializing composite objects/collections

◦ Add hooks for essential services—but don’t go overboard

In many cases, this isn’t

much different from

creating a code skeleton

Charles H Franke Lecture—Seton Hall University--April 26 2024

So

◦We’ve done all that!

◦All that’s left is the coding, right?

Charles H Franke Lecture—Seton Hall University--April 26 2024

RULE 2

It Doesn’t End with the Coding

In the real world, you can’t just turn in your assignment

Charles H Franke Lecture—Seton Hall University--April 26 2024

OK, what’s left?

◦ You’re a genius coder

◦ You solved the problem with your team

◦ Everyone should be smiling

◦ What have we left out?

 What do we need to do now?

◦ Any ideas?

Charles H Franke Lecture—Seton Hall University--April 26 2024

Using Generative AI

◦ It has become increasingly common to use generative AI

◦ To generate code for common functionality

◦ To serve as a pair programmer

◦ To generate documentation and help

◦ Responsibilities of the user

◦ Don’t use or use with extreme care for critical code

◦ Review & test the artifacts—check for correctness and completeness

◦ Beware of hallucination/fabulation

Charles H Franke Lecture—Seton Hall University--April 26 2024

Testing—Check the solution

◦ Goals

◦ Do the right thing Behavior corresponds to requirements

 Constraints are met

◦ Do the thing right Implementation is effective and efficient

 We aren’t going to get in trouble for it

◦ Do the thing well Standards are met

 Application can evolve

◦ Keep doing it better Test/validate the process as well

Charles H Franke Lecture—Seton Hall University--April 26 2024

Testing—Check the solution

◦ Test-driven development

◦ Integrate testing with implementation

◦ Anticipate with prototypes or simulations
 where appropriate

◦ Make sure to test for error paths and systems errors

◦ Some testing occurs late
◦ Stress testing—overload the application or the system

◦ Platform testing—test in actual deployment environment

◦ Acceptance testing—run working version past customer/users

Code Test

Debug

TestSet

Charles H Franke Lecture—Seton Hall University--April 26 2024

Validation & Verification—It ain’t just data

◦ Not just testing tools and checking interactions

◦ Code reviews, static/dynamic analyzers, metrics

◦ Security testing, timeliness, privacy protection, …

◦ Validation

◦ Compare to specification and requirements

◦ Ensure that safety/health and legal standards met

◦ Verification

◦ Address mathematical properties

◦ Protocols, algorithms, …

◦ Ensure proper sequencing of operations and proper values

Charles H Franke Lecture—Seton Hall University--April 26 2024

Maintenance—Assure the solution

◦ Address user issues and other problems that arise

◦ Sometimes just a matter of communication

◦ Point in the right direction

◦ Clear up misconceptions

◦ May require modifying models, code, or other artifacts

◦ Misunderstandings may suggest changes

◦ Changes might be to documentation or manual rather than code

◦ Some changes can be deferred to next update/release

Charles H Franke Lecture—Seton Hall University--April 26 2024

Maintenance—Assure the solution

◦ What changes might we have to make?

◦ Corrective—debugging and reaction to test issues

◦ Adaptive

◦ Respond to platform/system changes

◦ Support interoperability and portability

◦ Preventative

◦ Changes needed for security, privacy, and related problems

◦ Perfective—make it better

◦ Appearance, understanding/learning/use, performance, …

Charles H Franke Lecture—Seton Hall University--April 26 2024

Maintenance—Assure the solution

◦What changes need to be immediate?
◦ Corrective—Significant errors in behavior that

◦ Break the application

◦ Endanger life, health, environment, ...

◦ Require only minor, transparent changes, or changes to
documentation

◦ Preventative—Security holes, privacy violations, legal issues

◦ That have occurred, are public knowledge, or are likely to
occur

Charles H Franke Lecture—Seton Hall University--April 26 2024

Evolution—Extend the solution

◦ A major focus of agile methods and DevOps

◦ Development is sequence of iterations & releases

◦ Embraces major adaptive and perfective changes

◦ Move

◦ Into new versions and variants of the product

◦ From this product to related products or product line

◦ Adjust to changes in user community or new uses

Charles H Franke Lecture—Seton Hall University--April 26 2024

Reflection—Improve the process

◦What went right? What went wrong?

◦What felt uncomfortable?

 Could have been simpler?

◦Aim to improve
◦ The development process

◦ Development and management practices and culture

◦ Uses of artifacts and tools

◦ Team culture and interactions

◦ Reflect on social, ethical, … issues

Charles H Franke Lecture—Seton Hall University--April 26 2024

So

◦OK, we’re ready for that!

◦Now, all that’s left is the coding, right?

Charles H Franke Lecture—Seton Hall University--April 26 2024

RULE 3

There’s More than Coding
While You’re Coding

Preserving Sanity

Charles H Franke Lecture—Seton Hall University--April 26 2024

You’re not alone in the world

◦ Keep your team aware

◦ Of what you’ve done, are doing,

 and any choices you have made

◦ Often structured and supported

◦ Institutional and team practices

◦ Team meetings such as Scrums—address all workflows

◦ Pair programming in XP

◦ One writes code, other checks/critiques/comments/documents

◦ Recent observations—don’t let it become a bottleneck

Charles H Franke Lecture—Seton Hall University--April 26 2024

Keep all the balls in the air

◦ In modern approaches to software engineering

◦Coding is interleaved with other workflows
◦ Problems and opportunities discovered in coding

◦ Incremental incorporation of features and support

◦ In agile and related methods
◦ Interleaved with refinement of requirements and specification

◦ Across multiple incremental passes

◦ Addressed for example in the (Rational) Unified Process, based on UML artifacts
and practices

Charles H Franke Lecture—Seton Hall University--April 26 2024

Repeating myself

◦ Follow institutional and team testing practices

◦Write test code first (or at least understand how to test)

◦ As a team, results in development of a test suite for the application

◦ Sometimes need to use mocks or simulations

◦ For components that have not yet been developed

◦ For external components

◦ If actual execution is dangerous

 (cardiac workstation, atomic plant), impossible (Mars Rover), hard to repeat

◦ As usual, non-determinism/concurrency and timeliness require extra care

Charles H Franke Lecture—Seton Hall University--April 26 2024

This isn’t just an assignment

◦ This is an ongoing, dynamic project

◦ A large project might have
◦ Millions of lines, thousands of methods, hundreds of classes, …

◦ Dozens of consistent versions, and of families of variants

◦ A lifetime of ten years or more

◦ Code may be under revision by multiple team members

◦ To keep track, need to interact with
◦ Version control

◦ Configuration management and history

◦ Keep documentation and manual consistent with code

Charles H Franke Lecture—Seton Hall University--April 26 2024

After six months, you too will a

stranger to your own code

and documentation

RULE 4

Don’t Forget About the Coding

Good Practice is what makes Perfect (or nearly so)

Charles H Franke Lecture—Seton Hall University--April 26 2024

Charles H Franke Lecture—Seton Hall University--April 26 2024

Layered development

◦ Layer, tier, facet

◦ Layer How close to “the surface” ? UI, business logic, services

◦ Tier What part of the solution? presentation, rules, …

◦ Facet What issue is addressed? security, availability, ...

◦ May be different tools for layers, services/aspects for tiers/facets

◦ Underlying infrastructure layer

◦ Databases and operating system services

◦ Azure/AWS/gcp — PaaS Web services

◦ Thick client install, Web-based SaaS, microservices, the cloud

Charles H Franke Lecture—Seton Hall University--April 26 2024

Charles H Franke Lecture—Seton Hall University--April 26 2024

Application Layer

Integration Platform Layer

Operating System Layer

Hardware Layer

S
e

c
u

rity
 &

 p
riv

a
c

y
S
c

a
la

b
ility

E
x
te

n
sib

ility

M
a

in
ta

in
a

b
ility

E
tc

…
Domain Framework Layer

Il lustration Courtesy of Dr. Stephen Masticola

F
a

c
e

ts

Full Stack development

◦ Modern model of web development

◦ Full stack

◦ Front end/client User interface, communication, environment

◦ Back end/server Business logic

◦ Database Data, transaction management

◦ Services Includes OS, network and other technical

◦ Two examples—order to make acronym neat, not layering

◦ MEAN Stack MongoDB, Express, AngularJS, Node.js

◦ LAMP Stack Linux, Apache, MySQL, PHP

Charles H Franke Lecture—Seton Hall University--April 26 2024

Coding Standards

◦ Write good code

◦ See Robert Martin’s Clean Code as a resource

◦ Great book!

◦ Simple modules, classes, and methods

◦ Well-structured, simple interaction

◦ Good, informative names

◦ As before

◦ Follow team and enterprise guidelines

◦ Aim at good comments and consistent documentation

◦ Pay attention to concurrency and non-determinism

Charles H Franke Lecture—Seton Hall University--April 26 2024

Coding Standards

◦ Don’t screw up the future

◦ Cute tricks often screw up optimization and inhibit
modification

◦ But don’t overdesign for the future

◦ Much of the code will never be changed

 in major ways

◦ And many changes will follow well-known
patterns if needed

Charles H Franke Lecture—Seton Hall University--April 26 2024

But!

◦Anticipate interfaces/services may vary

◦Use design patterns to minimize or localize

 dependence on
◦ Different user interfaces

◦ Different services for different variants, situations, …

◦ Different implementations of services and collaborators

◦ Different algorithms or data structures to implement behavior

◦ Local vs remote connections or data

◦ Adapter, Façade, Proxy, Decorator, Observer, Command, COR

Charles H Franke Lecture—Seton Hall University--April 26 2024

Danger Signs

◦ Be very careful changing code

 that may interact with
◦ Security, privacy, and access control

◦ Timing constraints, and safety and health

◦ Non-deterministic behavior and concurrency

◦ Performance and resiliency with major effects

◦ Use code reviews, traceability tools, analyzers, and testing to see what

is affected by error or change, and where to make changes

◦ Regression testing is a key tool and should be automated

◦ Provides assurance that changes have not broken behavior guarantees

Charles H Franke Lecture—Seton Hall University--April 26 2024

Speed can kill

◦Ordinarily, we want to keep up the pace

◦ Rapid development key to modern methods

◦ But if you’re working on something tricky, risky, intricate

◦ Talk about it first!

◦ Test-first-development essential here

◦ Flesh out a skeleton

◦ Loop: Discuss, reflect, develop, test, debug

◦ Sometimes reflection means you actually “need to sleep on it”

Charles H Franke Lecture—Seton Hall University--April 26 2024

Technical Debt and Refactoring

◦ Technical debt

◦ Code tends to become ugly as it is
changed

◦ Some code is no longer needed or no
longer used

◦ Some code works but is confusing

◦ Comments and documentation
 become inconsistent with code

◦ Structure of code does not reflect its current
function

◦ Further changes more likely to introduce bugs
or confusion

Charles H Franke Lecture—Seton Hall University--April 26 2024

Technical Debt and Refactoring

◦ Address by local refactoring if possible,
redesign if necessary

◦ Refactoring uses code smells and
bugs to identify issues

◦ And design patterns to guide
sequences of local transformations

◦ A sequence of refactorings can fix

 most problems
◦ A large-scale rewrite is a last choice

Charles H Franke Lecture—Seton Hall University--April 26 2024

Don’t bother if it’s not worth it

◦ Focus attention on

◦ Code implementing core functionality—as discussed before

◦ Meaning of “core” changes as product matures

◦ Code that frequently breaks,

 needs rewriting, or has issues

◦ Code that will need to be generalized

◦ Identified threats

◦ Interactions with the outside

Charles H Franke Lecture—Seton Hall University--April 26 2024

While you’re coding

◦Add (only) meaningful comments

◦Document your changes

 (at an appropriate granularity)

◦Write document comments (Java ///)

◦Make note of

◦ Open issues

◦ Need for documentation

◦ Ugliness in the code—includes inconsistencies with practices

Charles H Franke Lecture—Seton Hall University--April 26 2024

Evolution revisited—Extend the solution

◦We’re never done until the product is retired

◦Completing the product we envisioned

◦ Go back to slide 28 ☺

◦ Improving the product we envisioned

◦Designing variants and versions

◦ Fitting better into a product line or larger system

Charles H Franke Lecture—Seton Hall University--April 26 2024

Evolution revisited—Extend the solution

◦ Incremental and iterative development

◦ Iterative delivery

◦Versions and variants

◦ Product line

◦Configurability

◦Accessibility

◦ Tree of products

◦ Many early products still sellable

Iterative Development of a Chair

• Version 1 Wood base, 4 legs

• Variant Child seat

• Product line Bench
• Version 2 Add back and fabric cover

• Configure Carpentry style

• Variant Stool

• Version 3 Add arms

• Version 4 Upholstered base, arms, back
• Configure Pattern, stain resist

• Version 5 Pillows, optional monogram, …

Charles H Franke Lecture—Seton Hall University--April 26 2024

META-RULE 1

No silver bullets, no golden hammers

Procrustes’ Bed is not a comfortable place

Charles H Franke Lecture—Seton Hall University--April 26 2024

Fit your method to the problem

◦ Writing a linear-algebra algorithm tool is not the same as writing

an intelligent recommender system

◦ Requirements are not likely to be dynamic

◦ Outside of user and system interfaces

◦ Constraints typically on performance or applicability

◦ Code chunks for well-understood computations can be larger

◦ They won’t change (if correct) and they won’t be misunderstood

◦ Parameter lists can be longer

◦ Although it may still make sense to pack them in an object

◦ It may make sense to call variables x, y, z, and t

Charles H Franke Lecture—Seton Hall University--April 26 2024

Fit your method to the problem

◦ Some pieces may call out for a different coding paradigm

◦ Functional code

◦ Use of aspects to implement cross-cutting concerns

◦ Basis of Kotlin and Scala, and now partially supported in Java

◦ Logic code and pattern matching

◦ Interactions with a database, even when data isn’t originally in one

◦ Active and real-time systems always require method and tool

enhancements / extensions

◦ Current + future discussions on the role of AI in code generation

Charles H Franke Lecture—Seton Hall University--April 26 2024

Fit your method to the problem

◦ Lots more to say—some mentioned before

◦ Physical constructs like chemical plants

◦ Cardiac workstations and atomic power plants

◦ The Mars rovers

◦ Even financial tools and healthcare records

◦ Each has different constraints on

◦ What can be modified and when

◦ What can be tested in the real world—especially extreme situations

◦ Whether iterative solutions can be deployed—and where they apply

Charles H Franke Lecture—Seton Hall University--April 26 2024

META-RULE 2

It’s an approach, dammit,
not a religion!

We’re training critical thinkers, not Bible salesmen!

Charles H Franke Lecture—Seton Hall University--April 26 2024

Don’t complicate without reason

◦ Support future change only where change is likely

◦ Don’t use indirection where only one instantiation is likely

◦ And so on

Charles H Franke Lecture—Seton Hall University--April 26 2024

Don’t be afraid to break the rules

◦ If it doesn’t matter

 and it makes things much simpler

◦ If it does matter but

 following the rules would create a mess

◦ But don’t do that without

◦ Informing your team, and

◦ Leaving a comment—that you’ve done it and why

◦ Understand how you could redesign or refactor if necessary

Charles H Franke Lecture—Seton Hall University--April 26 2024

Keep learning

◦ Don’t become too attached

 to how you do things now

◦ While processes and practices improve on the whole over time

◦ That doesn’t mean it’s perfect now

◦ Some things might be worse than they used to be—it’s a transition

◦ And others will be replaced by what’s better or more effective

◦ Changes in technology and in theory (!) will affect what you can do and how

you can do it

◦ And you want to keep up

Charles H Franke Lecture—Seton Hall University--April 26 2024

META-META-RULE
It’s Not Just

Software Engineering
It’s here, it’s there, it’s everywhere!

Charles H Franke Lecture—Seton Hall University--April 26 2024

These Rules Carry Over

◦ With appropriate changes in wording and concepts
◦ Fancy Latin mutatis mutandis—changing what needs to be changed

◦ Also apply to
◦ Mathematical modeling of complex, changing problems
◦ Problem solving of ongoing problems

◦ Preparing a presentation
◦ Investment portfolio analysis and management
◦ Project management and agile business processes
◦ Security including cybersecurity

◦ Much critical thinking (and learning critical thinking)
◦ And more

Charles H Franke Lecture—Seton Hall University--April 26 2024

Some important references

◦ Build yourself a library—print, virtual, or a mix

◦ Robert Martin, Clean Code

◦ All of “Uncle Bob’s” stuff is exceptional

◦ Martin Fowler, Refactoring, https://martinfowler.com/

◦ Johnson, Helm, Gamma, Vlissides, Design Patterns

◦ Lots of follow-up books, articles, web pages, …

◦ Craig Larman, Applying UML and Patterns

◦ Jeremy Kubica, Best Practices of Spell Design (fun view of clean/agile)

Charles H Franke Lecture—Seton Hall University--April 26 2024

Acknowledgments

◦ Dr. John Saccoman and Prof. Tara Wager

 and the Department of Math & CS

◦ Research colleagues

◦ Fr. Joseph Laracy SHU Math & CS + School of Theology

◦ Cyril Ku William Paterson University

◦ Vassilka Kirova Bell Labs Consulting (retired) & NJIT

◦ Garett Chang President, Highstep Technologies

◦ Om Hashmi Vice-President, Agile Brains Consulting

◦ Stephen Masticola Siemens Technology (retired)

Charles H Franke Lecture—Seton Hall University--April 26 2024

and the

Tech staff!

Questions?

Charles H Franke Lecture—Seton Hall University--April 26 2024

APPENDIX:
THE BROAD VIEW AND THE

STANDARD CS CURRICULUM

Charles H Franke Lecture—Seton Hall University--April 26 2024

Workflows—A lot of detail

Software Project

Business Model—Business case, Product Vision

U
m

b
re

lla
 A

c
tiv

itie
s &

M
a

n
a

g
e

m
e

n
t

R
e

so
u

rc
e

s, Tra
in

in
g

, R
isk

, …

Requirements—Elicitation, acquisition, analysis

Specification—RW patterns of interaction

Modeling—Use cases and Domains

Design—Objects, communication, patterns

Implement—Data structs, algorithms, details

Test—Unit, integration, system, stress, platform

Maintenance—Correct, adapt, prevent, perfect

Evolution—Extend, refactor

Reflection—Lessons learned, needed change

Charles H Franke Lecture—Seton Hall University--April 26 2024

Workflows—Evolution during your major

Introduction Software Project

Business Model
U

m
b

re
lla

 A
c

tiv
itie

s

&

M
a

n
a

g
e

m
e

n
t

Requirements

Specification

Modeling

Design

Implementation Implementation

Testing

Maintenance

Evolution

Reflection

Charles H Franke Lecture—Seton Hall University--April 26 2024

Workflows—Evolution during your major

Data Structures Software Project

Business Model
U

m
b

re
lla

 A
c

tiv
itie

s

&

M
a

n
a

g
e

m
e

n
t

Requirements

Specification

Modeling

Design Design

Implementation Implementation

Testing Testing

Maintenance

Evolution

Reflection

Charles H Franke Lecture—Seton Hall University--April 26 2024

Workflows—Evolution during your major

Databases Software Project

Business Model
U

m
b

re
lla

 A
c

tiv
itie

s

&

M
a

n
a

g
e

m
e

n
t

Req’ts Requirements

Spec Specification

Modeling Modeling

Design Design

Implementation Implementation

Testing Testing

Maintenance

Evolution

Reflection

Charles H Franke Lecture—Seton Hall University--April 26 2024

Workflows—Evolution during your major

Software Engineering Software Project

Maybe Business Model
U

m
b

re
lla

 A
c

tiv
itie

s

&

M
a

n
a

g
e

m
e

n
t

Req’ts Requirements

Spec Specification

Modeling Modeling

Design Design

Implementation Implementation

Testing Testing

Mainten Maintenance

Maybe Evolution

Reflection

Charles H Franke Lecture—Seton Hall University--April 26 2024

	Slide 1: Charles H. Franke Memorial Lecture
	Slide 2: Some reminiscences of Charlie Franke
	Slide 3: Four rules of software engineering
	Slide 4: Note
	Slide 5: Rule 1 It Doesn’t Start with the Coding
	Slide 6: A software development problem
	Slide 7: A software development problem
	Slide 8: How did I get my list (and my lecture)?
	Slide 9: Some questions—Input
	Slide 10: Some questions—Processing
	Slide 11: Some questions—Output
	Slide 12: Some questions—Security
	Slide 13: Some questions—Other concerns
	Slide 14: Rule 1 It Doesn’t Start with the Coding
	Slide 15: Be prepared
	Slide 16: The Long View—Preparing for a Career
	Slide 17: The Long View—Preparing for a Career
	Slide 18: The Enterprise View—Working Together
	Slide 19: The Work View
	Slide 20: Look before you leap
	Slide 21: The Project View—Before we start
	Slide 22: The Project View—Before we start
	Slide 23: The Project View—Before we start
	Slide 24: The Project View—Artifacts and Views
	Slide 25: And get to work
	Slide 26: Requirements—Understand the problem
	Slide 27: Requirements—Understand the problem
	Slide 28: Requirements—Understand the problem
	Slide 29: Specification—Understand the workings
	Slide 30: Modeling—Understand the structure
	Slide 31: Design—Understand the solution
	Slide 32: So
	Slide 33: Rule 2 It Doesn’t End with the Coding
	Slide 34: OK, what’s left?
	Slide 35: Using Generative AI
	Slide 36: Testing—Check the solution
	Slide 37: Testing—Check the solution
	Slide 38: Validation & Verification—It ain’t just data
	Slide 39: Maintenance—Assure the solution
	Slide 40: Maintenance—Assure the solution
	Slide 41: Maintenance—Assure the solution
	Slide 42: Evolution—Extend the solution
	Slide 43: Reflection—Improve the process
	Slide 44: So
	Slide 45: Rule 3 There’s More than Coding While You’re Coding
	Slide 46: You’re not alone in the world
	Slide 47: Keep all the balls in the air
	Slide 48: Repeating myself
	Slide 49: This isn’t just an assignment
	Slide 50: Rule 4 Don’t Forget About the Coding
	Slide 51
	Slide 52: Layered development
	Slide 53
	Slide 54: Full Stack development
	Slide 55: Coding Standards
	Slide 56: Coding Standards
	Slide 57: But!
	Slide 58: Danger Signs
	Slide 59: Speed can kill
	Slide 60: Technical Debt and Refactoring
	Slide 61: Technical Debt and Refactoring
	Slide 62: Don’t bother if it’s not worth it
	Slide 63: While you’re coding
	Slide 64: Evolution revisited—Extend the solution
	Slide 65: Evolution revisited—Extend the solution
	Slide 66: Meta-Rule 1 No silver bullets, no golden hammers
	Slide 67: Fit your method to the problem
	Slide 68: Fit your method to the problem
	Slide 69: Fit your method to the problem
	Slide 70: Meta-Rule 2 It’s an approach, dammit, not a religion!
	Slide 71: Don’t complicate without reason
	Slide 72: Don’t be afraid to break the rules
	Slide 73: Keep learning
	Slide 74: Meta-meta-rule It’s Not Just Software Engineering
	Slide 75: These Rules Carry Over
	Slide 76: Some important references
	Slide 77: Acknowledgments
	Slide 78: Questions?
	Slide 79: Appendix: The Broad VIEW and the standard CS Curriculum
	Slide 80: Workflows—A lot of detail
	Slide 81: Workflows—Evolution during your major
	Slide 82: Workflows—Evolution during your major
	Slide 83: Workflows—Evolution during your major
	Slide 84: Workflows—Evolution during your major

