CHARLES H. FRANKE

MEMORIAL LECTURE

Charles H. Franke Memorial Lecture, Seton Hall University, 2024
UPS Lecture Series, William Paterson University, 2021

UPS Lecture--William Paterson University--April 16 2021

Some reminiscences of Charlie Franke

o |'ve posted some memories of Charlie and his influence on me and my
academic career

o |'ll just mention two
o Teaching from memory

o Charlie never used notes
o Only once did he go back to his office for 5 mins to consult

o Going back for CS

o As the department expanded to include CS, Charlie went back for an MS
o He then encouraged me, which started me on the road that led here

Charles H Franke Lecture—Seton Hall University--April 26 2024

FOUR RULES OF
SOFTWARE

ENGINEERING

Thomas Marlowe, Seton Hall University
UPS Lecture Series—William Paterson Universi

Note

o Presentation is oriented toward computer science and software
development

o Not hard o translate much of it info guidelines for the process of

o Mathematical modeling

o Statistical modeling and design of experiments

o A data science/data analysis application

o Interacting with generative Al and prompt engineering to solve a
problem

o Further brief discussion at end of presentation

Charles H Franke Lecture—Seton Hall University--April 26 2024

RULE |

It Doesn’t Start with the Coding

Providing a context

Lecture—Seton Hall University--April 26 2024

A software development problem

o Sort a set of student records

o Student name, campus ID,
major code, number of credits, GPA

o Plus list of current courses
o Each course has identifier, name,
instructor, number of credits /
o Simple enough that we can try to do it as a single development
step

Charles H Franke Lecture—Seton Hall University--April 26 2024

A software development problem

o What do you need to know?e

o Assume that there are no external constraints on

o Programming language, IDE, tools, other resources
o Development methodology or team structure
o Except as affected by the problem itself,
or by testing requirements
o SO don't consider A

o Suggestionse

Charles H Franke Lecture—Seton Hall University--April 26 2024

How did | get my list (and my lecture)<¢

(e]

Noft fully formed just by looking and writing A
Teaching SW engineering, data structures, ,ﬁr

databases, statfistics, ..., for years AP

Learning from texts, professional books & blogs,
conference papers & posters

Interaction with colleagues and with students
Repeated reflection and modification

At least 50 content changes in this deck from
first development to this presentation

o !r’[would probably change more if | had more
ime

o

(0]

o

o

o

Charles H Franke Lecture—Seton Hall University--April 26 2024

Some guestions—Input

> How many recordse How big is each recorde Does size varye
o Do we have dll the records at the starte

> Where do we get the records? ASE S ENEe @ 5eiilTg
)) algorithms and data structures
o Local or remote file/files Affects design of interfaces
o Received individually (user input, streams, ...) \é\/ifh g\odifiCOTion may want
atabase
o Can records be modified, or are they fixed? May require preprocessing

o Same order, encoding and meaning for fieldse

o |s input assumed legitimate (type and range consistent, efc.), or do we need
to check?

o User interface—déSolamente en ingles?

Charles H Franke Lecture—Seton Hall University--April 26 2024

Some questions—Processing

- What are we sorling on?

o |ID #, Name, other, user selectione A tuple (major, ID)?
o Single pass or repeated—interacts with static or dynamic data set

o Do we need to keep the original data set in original ordere

o What do we do with duplicate records?e

o Same exact information, refinements (same or missing), clearly same but
newer, conflicts for same key

o What do we do with invalid data?
o Invalid records, invalid fields, constraint violations

Charles H Franke Lecture—Seton Hall University--April 26 2024

Some questions—QOutput

o How should the results be presentede
o Local/remote monitor(s), local/remote file
o Can the user filter the resultse
o How should accessibility be handled?

o |[f output is presented, what report/display structure is required?
o Will all the output be available to every viewere

o |If output is stored, what structure should be usede

o Does the output need to be preservede
o Very important if input is dynamic or modifiable—timestamps

o What needs 1o be done for accessibility?

Charles H Franke Lecture—Seton Hall University--April 26 2024

Some questions—Security

o Security and related topics
o |s the data subject to
privacy/confidentiality constraintse
o Should fields be suppressed/transformed
In display of resultse

D
WQ\(‘
o Do we need extra security for
storage/computation/communicatione

o |f either input or output are stored, should they be encrypted?
o |s access control/validation needed on inputse
o |s validation needed to view outpute

Charles H Franke Lecture—Seton Hall University--April 26 2024

Some guestions—Other concerns

o Other extra-functional constraints
o Are there criteria for quality, availability, timeliness, ...¢
o Does there need to be documentation, a user manual, ...2
o Are there ethical or social issuese Legal issues?

o Meta-questions
o How long is this application going to laste Not all of these
o Are we responsible for fixing problems? are fully germane
o Are we going to need to extend this? for this problem
o |s this for internal use, for a client, or for sale?
> How much documentation/help will we have to provide?

Charles H Franke Lecture—Seton Hall University--April 26 2024

RULE |

It Doesn’t Start with the Coding

The Bigger Picture

Lecture—Seton Hall University--April 26 2024

BE PREPARED

Itisn’t just getting the credentiall

Charles H Franke Lecture—Seton Hall University--April 26 2024

The Long View—Preparing for a Career

o Technical knowledge ?

o Programming, IDEs, software engineering
(traditional, Agile, DevOps)
o Data structures, algorithms, databases,

networks, operating systems, ... g
o Al and Data Science Q ‘
o Professional competencies

o Communication, teamwork, leadership, empathy, ethics, standards
o Crifical thinking, problem solving, brainstorming, learning to learn

o CS or math has prepared you very well
o Coursework, feam projects, undergraduate research, internships
o Projects become “bigger”, and so has your responsibility within them

Charles H Franke Lecture—Seton Hall University--April 26 2024

The Long View—Preparing for a Career

o Understand your responsibilities

o To your employer, your customer, your fellow workers, % Code of
the software development community, and society [Conduct
o And the responsibilities others have toward you
o ACM Code of Ethics (https://www.acm.org/code-of-ethics) L:’V‘“-——"fﬁ

o ACM Code of Software Engineering Ethics
https://ethics.acm.org/code-of-ethics/software-engineering-code/

o Combine generdlist skills with developing a specialty
o Consider professional memberships and certifications

Charles H Franke Lecture—Seton Hall University--April 26 2024

https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://ethics.acm.org/code-of-ethics/software-engineering-code/

The Enterprise View—Working Together

o You're going to work in a context
and with others

o Understand the company

o And its management and technical processes, ¢
at least at a high level

-

o Understand job responsibilities (and be wiling to change)
o Understand team structure and practices
o Be wiling and able to cooperate for success and feam building

Charles H Franke Lecture—Seton Hall University--April 26 2024

The Work View

o OK, you've got a job as a software developer (Hoorayl)

o You're working on a large project with a team
o Perhaps communicating with other feams

o The method may be agile, tfraditional, hybrid, or specialized
o SO, we can just start codinge
o Well ...

Charles H Franke Lecture—Seton Hall University--April 26 2024

LOOK BEFORE YOU LEAP

Make sure there's water in the pooll

Charles H Franke Lecture—Seton Hall University--April 26 2024

The Project View—Before we start

o Should we be doing this at all?
o Does It fit with our expertise and business goalse @
o Do we have the resources and traininge [- @
o |f for a customer, m
do we feel comfortable in the relationshipe

o DO we know what the problem is doing—Ilarge scale?¢
o Product Vision
o What problem is it trying to solve, and how will it try to solve ite
o Business Case
o How does the solution fit with our businesse With the customer’s?

Charles H Franke Lecture—Seton Hall University--April 26 2024

The Project View—Before we start

I

o Do we have the right resourcese | 5 T2 b

Time and money Tradeoffs in when we investigate,)
o Personnel when we stipulate, .
o Training and support and when we acquire resources &
Don't expect full answers right away

> < >

B

N

o Experts as needed
o Tools—for development, for management, for communication

o Do we have the right feam<e Do we have the right process?

o Do we have management backing on project, process, and producte

Charles H Franke Lecture—Seton Hall University--April 26 2024

The Project View—Before we start

o What risks might we face?

o TO project, process, product, personnel
o External risks and catastrophes

o Do we have an RMMM plan and structure? S—

o Monitor, manage, and mitigate risk More tradeoffs—but
o Management task with technical input Must anticipate major risks
> Avoid or prevent if possible Must set up structure

o Mifigation—recovery, reduction, restoring morale and productivity, ...

Charles H Franke Lecture—Seton Hall University--April 26 2024

The Project View—Artitacts and Views

o Each workflow produces both informal and formal artifacts

o Code is one—and incorporates others like comments
o Others come from fools or analyses—Ilike unit test reports

o Artifacts may need views

o Role Team, management, customer,
users, operators/helpdesk St
o Level Precis, overview, details

o Aspect Behavior, interfaces, security & privacy, timeliness, ...
o Understand what belongs/will be found where

Charles H Franke Lecture—Seton Hall University--April 26 2024

AND GET TO WORK

You may specialize, but you need a global view

Charles H Franke Lecture—Seton Hall University--April 26 2024

Requirements—Understand the problem

o What do we need to know at the start (of this pass)?

o What definitely needs to be considerede

o What must be done¢ What are ifs inferactions?
o What's going to be hard? Tricky? Uncertain?
o Subject to frequent change?

o How does it need to do ite What about
o Security, privacy/confidentiality, intellectual property?
o Timeliness and safety (acftive systems), availability, resilience, performance?
o Business & tfechnical services—accounting & inventory, logging & accesse
o Support—manuals, documentation, on-line, accessibility, ...¢

o What legal, standards, and ethical issues may arise?

2259732647 GoGraph.com

Charles H Franke Lecture—Seton Hall University--April 26 2024

Requirements—Understand the problem

o How does this add value for the customere The usere

o For example
o Behavior

o Intferaction

o Extensibility

Charles H Franke Lecture—Seton Hall University--April 26 2024

Increased functionality

Better performance, reliability/resiliency, ...
Improve or add interfaces & improve accessibility
Better understandability, usabllity, aesthetics
Reduce annoyance/inconvenience

Support additional platforms

Improve internationalization, interoperability
Address product line consistency

Requirements—Understand the
problem

o How do we learn about requirementse
o Discuss and listen

o Read (regulations, standards, terminology, R
common practice, ...) T LA A\ W
o Observe W BN

-

o Check interpretation vs problem & w/ customer (!)
o And end users/operators if possible
o Test if possible

A
LY
-

& 4

AU L ;
". l“"‘ v : A : - e '
L o w X 3
~ ’ 4 u’.'.’n-& . " n'D
u_,u_‘v‘uI!;\'..._“, I Geok "
b © | e A
'y -_’.—"cl‘ 0
-,:.f,v?‘h SRR o e
Ve

o What about problems and constraintse bonat \X%i \Qﬂ\ﬁ
o What is missinge What works poorly 2 =2 "r’? '"9%
o What has gone wrong¢ How and why¢ g‘fj p
> Are we infroducing new concerns? z
o What needs to be guaranteed?) - e

Charles H Franke Lecture—Seton Hall University--April 26 2024

Specification—Understand the workings

APPLYING UML
> How do the business processes work?2 Al UG
o Happy path(s)—when everything goes right
o Alternative flows—variants and options
o Handling special cases, exceptions, errors — existing and new

CRAIG LARMAN

o Qur product may provide same services very differently

o What needs special attention?
o Try to capture implicit assumptions and tacit knowledge Emphasize
o Understand concurrency/non-determinism in problem
o What can happen in parallele In different order?
o Where is security an issue¢ Where are the bottlenecks? Precise timinge

when unclear, ftricky,
or complicated

Charles H Franke Lecture—Seton Hall University--April 26 2024

Modeling—Understand the structure

o |Isolate real-world entities and interactions
o Some entities are not physical —
transactions, meetings, ...

o Create conceptual objects and

information flows to handle
o Effort focused on less-than-obvious translations &c

o Include (at least) security, privacy, timing, safety, accessibility from start
o Need not be fully implemented
o But need to be aware and leave flags and hooks

o Be aware of points of fragility—Where can this break?

Charles H Franke Lecture—Seton Hall University--April 26 2024

Design—Understand the solution

o The application world is a model of the model
o Make a further franslation fo that model

In many cases, thisisn’t

o Create skeleton for method code much different from
creating a code skeleton

o Decide on algorithms and data structures

o Use design patterns, guidelines, and idioms

o May modify modeling/domain level, largely in predictable ways
o Example: materializing composite objects/collections

o Add hooks for essential services—but don't go overboard

Charles H Franke Lecture—Seton Hall University--April 26 2024

SO

-We've done all thafl
o All that's left is the coding, righte

Charles H Franke Lecture—Seton Hall University--April 26 2024

RULE 2

It Doesn’t End with the Coding

In the real world, you can’t just turn in your assignment

Lecture—Seton Hall University--April 26 2024

OK, what's lefte

o You're a genius coder
o You solved the problem with your feam
o Everyone should be smiling
- What have we left out?
What do we need to do nowze

o Any idease

Charles H Franke Lecture—Seton Hall University--April 26 2024

Using Generative Al

o [t has become increasingly common to use generative Al
o To generate code for common functionality
o TO serve as a pair programmer
o To generate documentation and help

o Responsibilities of the user

o Don't use or use with extreme care for critical code
o Review & test the artifacts—check for correctness and completeness
o Beware of hallucination/fabulation

Charles H Franke Lecture—Seton Hall University--April 26 2024

Testing—Check the solution

o Goals

o Do the right thing Behavior corresponds to requirements
Constraints are met

o Do the thing right Implementation is effective and efficient
We aren’t going to get in trouble for it

o Do the thing well Standards are met
Application can evolve

o Keep doing it better Test/validate the process as well

Charles H Franke Lecture—Seton Hall University--April 26 2024

LA

Testing—Check the solution

o Test-driven development m_.

o Integrate testing with implementation

o Anficipate with prototypes or simulations
where appropriate

o Make sure to test for error paths and systems errors

o Some testing occurs late
o Stress testing—overload the application or the system
o Platform testing—test in actual deployment environment
o Acceptance testing—run working version past customer/users

Charles H Franke Lecture—Seton Hall University--April 26 2024

Validation & Verification—It ain’t just data

: : o : caBned \ 4
o Not just festing fools and checking inferactions Wt Gode Review Process Hecessay

o Code reviews, static/dynamic analyzers, meftrics e
o Security festing, fimeliness, privacy protfection, ... o (@

o Validation
o Compare to specification and requirements
o Ensure that safety/health and legal standards met

o Verification
o Address mathematical properties
o Protocols, algorithmes, ...
o Ensure proper sequencing of operations and proper values

Charles H Franke Lecture—Seton Hall University--April 26 2024

Maintenance—Assure the solution

o Address user issues and ofher problems that arise .y 8
o Sometimes just a mafter of communication ol

o Point in the right direction
o Clear up misconceptions

o May require modifying models, code, or other artifacts

o Misunderstandings may suggest changes
o Changes might be to documentation or manual rather than code

o Some changes can be deferred to next update/release

Charles H Franke Lecture—Seton Hall University--April 26 2024

Maintenance—Assure the solution

- What changes might we have to make?

o Corrective—debugging and reaction to test issues
o Adaptive

o Respond to platform/system changes

o Support interoperability and portability
o Preventative

o Changes needed for security, privacy, and related problems
o Perfective—make it better

o Appearance, understanding/learning/use, performance, ...

Charles H Franke Lecture—Seton Hall University--April 26 2024

Maintenance—Assure the solution

- What changes need to be immediate? (IMMEDIATE
> Corrective—Significant errors in behavior that mﬁlljl{)},\{;,]
o Break the application S
o Endanger life, health, environment, ... g&7T0586680 GoGraph.com
o Require only minor, fransparent changes, or changes to
documentation

o Preventative—Security holes, privacy violations, legal issues

o That have occurred, are public knowledge, or are likely to
occur

Charles H Franke Lecture—Seton Hall University--April 26 2024

Evolution—Extend the solution

o A major focus of agile methods and DevOps . :
. - [ﬁ‘Wﬁ'
o Development is sequence of iterations & releases

*a S L. 2k
- Embraces major adaptive and perfective changes ST & ® &1

ot

o Move % f & i
o Intfo new versions and variants of the product -

o From this product to related products or product line
o Adjust to changes in user community or new uses

Charles H Franke Lecture—Seton Hall University--April 26 2024

Reflection—Improve the process

o What went right? What went wronge

o What felt uncomfortablee
Could have been simplere
o AIm TO iImprove
o The development process
o Development and management practices and culture

o Uses of artifacts and tools
o Team culture and interactions

o Reflect on social, ethical, ... issues

Charles H Franke Lecture—Seton Hall University--April 26 2024

SO

o OK, we're ready for that!
o Now, all that's left is the coding, righte

Charles H Franke Lecture—Seton Hall University--April 26 2024

RULE 3

There's More than Coding
While You're Coding

Preserving Sanity

You're not alone in the world

o Keep your team aware

o Of what you've done, are doing,
and any choices you have made

o Often structured and supported

o Institutional and team practices
o Team meetings such as Scrums—address all workflows
o Pair programming in XP
o One writes code, other checks/critiques/comments/documents
o Recent observations—don't let it become a boftleneck

Charles H Franke Lecture—Seton Hall University--April 26 2024

Keep all the balls in the air

o |[n Mmodern approaches to software engineering 0®e
%

o Coding is interleaved with other workflows
o Problems and opportunities discovered in coding
o Incremental incorporation of features and support

o In agile and related methods
o Interleaved with refinement of requirements and specification
o Across multiple incremental passes

o Addressed for example in the (Rational) Unified Process, based on UML artifacts
and practices

Charles H Franke Lecture—Seton Hall University--April 26 2024

Repeating myself

o Follow institutional and tfeam festing practices
o Write test code first (or at least understand how to test)

o AS a team, results in development of a test suite for the application

o Sometimes need to use mocks or simulations

o For components that have not yet been developed
o For external components
o [f actual execution is dangerous

(cardiac workstation, atomic plant), impossible (Mars Rover), hard to repeat

o As usual, non-determinism/concurrency and fimeliness require extra care

Charles H Franke Lecture—Seton Hall University--April 262024

This isn’t just an assignment

o This is an ongoing, dynamic project

o A large project might have
o Millions of lines, thousands of methods, hundreds of classes, ...
o Dozens of consistent versions, and of families of variants
o A lifefime of ten years or more

o Code may be under revision by multiple team members

o To keep track, need to interact with After six months, you too will a
o Version control stranger to your own code

o Configuration management and history clicieice S NICHION
o Keep documentation and manual consistent with code

Charles H Franke Lecture—Seton Hall University--April 26 2024

RULE 4

Don’t Forget About the Coding

Good Practice is what makes Perfect (or nearly so)

RS S
XY

Charles H Franke Lecture—Seton Hall University--April 262024

Layered development

(@) I_Oyer' 'l'ier' fgce'l' ag101788428 GoGraph.com
o Layer How close to “the surface” ¢ Ul, business logic, services
o Tier What part of the solufione presentation, rules, ...
o Facet What issue is addressede security, availability, ...

o May be different tools for layers, services/aspects for tiers/facets

o Underlying infrastructure layer
o Databases and operating system services
o Azure/AWS/gcp — PaaS Web services
o Thick client install, Web-based SaasS, microservices, the cloud

Charles H Franke Lecture—Seton Hall University--April 26 2024

XY N
O @
< QN
@ ¥ & @ L
6\ @C’% \O O "~
N4 & &> & (T CZ)
@, Q)\) NS & X =
0| =
L Q212 |
Application Layer ool O3 Q
2el=ol |
. == =X (72]
Domain Framework Layer =< |2
Qo
Integration Platform Layer 3
Q
8.
Operating System Layer
Hardware Layer

Charles H Franke Lecture—Seton Hall University--April 262024 llNustration Courtesy of Dr. Stephen Masticola

Full Stack development

¢
[+
|‘ |

o Modern model of web development

o Full stack
o Front end/client User inferface, communication, environment
o Back end/server Business logic
o Database Data, transaction management
o Services Includes OS, network and other technical

o Two examples—order to make acronym neat, not layering

o MEAN Stack MongoDB, Express, AngularlS, Node.js
o LAMP Stack Linux, Apache, MySQL, PHP

Charles H Franke Lecture—Seton Hall University--April 262024

Coding Standards

o Write good code
o See Robert Martin’s Clean Code as a resource Clean Code

o Great book! iiebon s ioiesvan Coormy

o Simple modules, classes, and methods

o Well-structured, simple interaction ‘ _

o Good, informative names

o As before
o Follow team and enterprise guidelines
o Aim at good comments and consistent documentation
o Pay attention to concurrency and non-defterminism

Charles H Franke Lecture—Seton Hall University--April 26 2024

Coding Standards

o Don't screw up the future

o Cute fricks often screw up optimization and inhibit
modification

o But don’t overdesign for the future
o Much of the code will never be changed
IN Major ways

o And many changes will follow well-known
patterns if needed

Charles H Franke Lecture—Seton Hall University--April 26 2024

Butl!

o Anticipate inferfaces/services may vary Design Patterns

ents of Reusabl
Object-Or jenited Softward

o Use design patterns to minimize or localize

dependence on

o Different user interfaces

o Different services for different variants, situations, ...

o Different implementations of services and collaborators
o Different algorithms or data structures to implement behavior
o Local vs remote connections or data

o

o Adapter, Facade, Proxy, Decorator, Observer, Command, COR

Charles H Franke Lecture—Seton Hall University--April 26 2024

Danger Signs

o Be very careful changing code

that may interact with
o Security, privacy, and access control
o Timing constraints, and safety and health
o Non-deterministic behavior and concurrency
o Performance and resiliency with major effects

o Use code reviews, traceability tools, analyzers, and testing to see what
Is affected by error or change, and where to make changes

o Regression testing is a key tool and should be automated
o Provides assurance that changes have not broken behavior guarantees

Charles H Franke Lecture—Seton Hall University--April 26 2024

Speed can kill

1L UATHINK

o Ordinarily, we want o keep up the pace
o Rapid development key to modern methods
o BUt If you're working on something tricky, risky, intricate
o Talk about it first!
o Test-first-development essential here
o Flesh out a skeleton

o Loop: Discuss, reflect, develop, fest, debug
o Sometimes reflection means you actually “need to sleep on it”

Charles H Franke Lecture—Seton Hall University--April 26 2024

Technical

o Technical debt

o Code tends to become ugly as it is

changed

o Some code is no longer needed or no

longer used

Debt and Refactoring

Vicious Cycle of Technical Debt

o Some code works but is confusing
o Comments and documentation

become inconsistent with code &
o Structure of code does not reflect its current {f:a <
c 7.,.
function (J('ZEE *}“‘f*
o Further changes more likely to intfroduce bugs ~..\.,_-/'

or confusion

——

Charles H Franke Lecture—Seton Hall University--April 26 2024

Technical Debt and Refactoring

o Address by local refactoring if possible, R e o
redesign if necessary -
o Refactoring uses code smells and
bugs to identify issues
o And design patterns to guide iy e e M IREEACTORING
sequences of local fransformations ke

> A sequence of refactorings can fix [N

Most problems ‘
o A large-scale rewrife is a last choice 28 H.

rrrrrrr

Charles H Franke Lecture—Seton Hall University--April 26 2024

Don't bother if iIt's not worth It

o Focus aftention on
o Code implementing core functionality—as discussed before
o Meaning of “core” changes as product matures
o Code that frequently breaks, el
needs rewriting, or has issues “Doat
o Code that will need to be generalized - = f
o |dentified threats
o Interactions with the outside

Charles H Franke Lecture—Seton Hall University--April 26 2024

While you're coding

o Add (only) meaningful comments [%+
* Code Readability
o Document your changes */
(at an appropriate granularity) tF (brea:able(())) {
, e_happy();
o Write document comments (Java ///) } else {
> Make nofe of } i

o OQpen issues
o Need for documentation
o Ugliness in the code—includes inconsistencies with practices

Charles H Franke Lecture—Seton Hall University--April 26 2024

Evolution revisited—Extend the solution

o We're never done until the product is retired

o Completing the product we envisioned o

> Go back to slide 28 © Gif):;“é*
o Improving the product we envisioned PRV
o Designing variants and versions

o Fitting beftter info a product line or larger system

Evolution revisited—Extend the solution

o|ncremental and iterafive development

o [terative delivery
o Versions and variants
o Product line
o Configurability
o Accessibility
o Tree of products
o Many early products still sellable

Charles H Franke Lecture—Seton Hall University--April 26 2024

Iterative Development of a Chair
Version 1 Wood base, 4 legs
« Variant Child seat
* Product line Bench
Version 2 Add back and fabric cover
Carpentry style

« Configure
 Variant Stool

Add arms

Upholstered base, arms, back
Pattern, stain resist

Pillows, optional monogram, ...

Version 3
Version 4

« Configure
Version 5

META-RULE 1

No silver bullets, no golden hammers

Procrustes’ Bed is not a comfortable place

FIt your method to the problem

o Writing a linear-algebra algorithm tool is not the same as writing
an intelligent recommender system Scalar Vector. Matrix .~ Tensor

o Requirements are not likely to be dynamic 1 1 1 12
o Qutside of user and system interfaces . har
o Constraints typically on performance or applicability
o Code chunks for well-understood computations can be larger
o They won't change (if correct) and they won't be misunderstood
o Parameter lists can be longer
o Although it may sftill make sense to pack them in an object
o [t may make sense to call variables x, y, z, and t

Charles H Franke Lecture—Seton Hall University--April 26 2024

FIt your method to the problem

o Some pieces may call out for a different coding paradigm

o Functional code
o Use of aspects to implement cross-cutting concerns
o Basis of Kotlin and Scala, and now partially supported in Java

o Logic code and pattern mafching
o Interactions with a database, even when data isn't originally in one

o Active and readl-time systems always require method and tool
enhancements / extensions

o Current + future discussions on the role of Al in code generation

Charles H Franke Lecture—Seton Hall University--April 26 2024

FIt your method to the problem

o Lots more o say—some mentioned before \\\

o Physical constructs like chemical plants

o Cardiac workstations and atomic power plants
o The Mars rovers

o Even financial tools and healthcare records

o Each has different constraints on

o What can be modified and when
o What can be ftested in the real world—especially extreme situations
o Whether iterative solutions can be deployed—and where they apply

Charles H Franke Lecture—Seton Hall University--April 26 2024

META-RULE 2

It's an approach, dammit,
not a religionl

We're fraining crifical thinkers, not Bible salesmen!

Don’'t complicate without reason

o Support future change only where change is likely
o Don't use indirection where only one instantiation is likely

o And SO on

Charles H Franke Lecture—Seton Hall University--April 26 2024

o |f It doesn’t matter
and it makes things much simpler

o |f it does matter but
following the rules would create a mess

o But don't do that without
o Informing your team, and

Don't be afraid to break the rules

=
Ey
»

ik
L/

)V awZ

V@i

0
"4

ey’
B Y o\

o Leaving a commenit—that you've done it and why

o Understand how you could redesign or refactor if necessary

Charles H Franke Lecture—Seton Hall University--April 26 2024

ALL THEIR LIVES

Keep learning B T

o Don’'t become too attached
to how you do things now

o While processes and practices improve on the whole over time
o That doesn’'t mean it's perfect now
o Some things might be worse than they used to be—it's a transition
o And others will be replaced by what's better or more effective

o Changes in tfechnology and in theory (!) will affect what you can do and how
you can do it

o And you want to keep up

Charles H Franke Lecture—Seton Hall University--April 26 2024

META-META-RULE

It's Not Just
Software Engineering

It’'s here, it's there, it's everywherel

These Rules Carry Over

o With appropriate changes in wording and concepts
o Fancy Latin mutatis mutandis—changing what needs to be changed

o Also apply to
o Mathematical modeling of complex, changing problems
o Problem solving of ongoing problems
o Preparing a presentation
o Investment portfolio analysis and management
o Project management and agile business processes
o Security including cybersecurity
o Much critical thinking (and learning critical thinking)
o And more

Charles H Franke Lecture—Seton Hall University--April 26 2024

Some important references

o Build yourself a library—print, virtual, or a mix |—I

o Robert Martin, Clean Code
o All of “Uncle Bob's” stuff is exceptional

i\

o Martin Fowler, Refactoring, https://martinfowler.com/

o Johnson, Helm, Gamma, Vlissides, Design Patterns
o Lots of follow-up books, articles, web pages, ...

o Craig Larman, Applying UML and Patterns

o Jeremy Kubica, Best Practices of Spell Design (fun view of clean/agile)

Charles H Franke Lecture—Seton Hall University--April 26 2024

Acknowledgments ﬁ%g
o Dr. John Saccoman and Prof. Tara Wager L8 | "

and the Deparfment of Math & CS S T
o Research colleagues fech staff:
o Fr. Joseph Laracy SHU Math & CS + School of Theology
o Cyril Ku William Paterson University
o Vassilka Kirova Bell Labs Consulting (refired) & NJIT
o Garett Chang President, Highstep Technologies
o Om Hashmi Vice-President, Agile Brains Consulting

o Stephen Masticola Siemens Technology (retired)

Charles H Franke Lecture—Seton Hall University--April 26 2024

Questions®e

Charles H Franke Lecture—Seton Hall University--April 26 2024

APPENDIX:

THE BROAD VIEW AND THE
STANDARD CS CURRICULUM

Lecture—Seton Hall University--April 26 2024

Workflows—A |lot of detaill

Business Model—Business case, Product Vision
Requirements—Elicitation, acquisition, analysis
Specification—RW patterns of interaction
Modeling—Use cases and Domains
Design—Objects, communication, patterns
Implement—Data structs, algorithms, details

Test—Unit, infegration, system, stress, platform

Juswaboupw
¥ SOUIAIDY Bflaigquin

Maintenance—Correct, adapt, prevent, perfect

TSIy ‘BUIUIDI] ‘S92IN0SDY

Evolution—Extend, refactor
Reflection—Lessons learned, needed change

Charles H Franke Lecture—Seton Hall University--April 26 2024

Workflows—Evolution during your major

Business Model

Infroduction

Requirements

Specification <

. z 3

Modeling o o

Desi 3 =

esign Q QOQ

Implementation Implementation % (:‘i

- Testing 5 =

- Maintenance 2
- Evolution
- Reflection

Charles H Franke Lecture—Seton Hall University--April 26 2024

Workflows—Evolution during your major

Business Model

Data Structures

Requirements

Specification <

. z 3

Modeling a 9

B e Des 3 .5

esign esign & o 0

Implementation Implementation % g

Testing _ Testing g =

- Maintenance 2
- Evolution
- Reflection

Charles H Franke Lecture—Seton Hall University--April 26 2024

Workflows—Evolution during your major

Business Model

Databases

Req'ts Requirements

Spec Specification %

Modeling Modeling § o

Design Design é 0o %
Implementation Implementation % (_:‘{
Testing Testing g =
Maintenance - Q

Evolution

Reflection

Charles H Franke Lecture—Seton Hall University--April 26 2024

Workflows—Evolution during your major

Software Engineering
Maybe
Req'ts
Spec
Modeling

Design

Implementation
Testing

Mainten
Maybe

Charles H Franke Lecture—Seton Hall University--April 26 2024

Software Project

Business Model
Requirements

Specification <
. z 3
Modeling o o
Desi 3 =
esign Q go Q
Implementation (3" (_:‘)i
Testing g =
Maintenance 2
Evolution
Reflection

	Slide 1: Charles H. Franke Memorial Lecture
	Slide 2: Some reminiscences of Charlie Franke
	Slide 3: Four rules of software engineering
	Slide 4: Note
	Slide 5: Rule 1 It Doesn’t Start with the Coding
	Slide 6: A software development problem
	Slide 7: A software development problem
	Slide 8: How did I get my list (and my lecture)?
	Slide 9: Some questions—Input
	Slide 10: Some questions—Processing
	Slide 11: Some questions—Output
	Slide 12: Some questions—Security
	Slide 13: Some questions—Other concerns
	Slide 14: Rule 1 It Doesn’t Start with the Coding
	Slide 15: Be prepared
	Slide 16: The Long View—Preparing for a Career
	Slide 17: The Long View—Preparing for a Career
	Slide 18: The Enterprise View—Working Together
	Slide 19: The Work View
	Slide 20: Look before you leap
	Slide 21: The Project View—Before we start
	Slide 22: The Project View—Before we start
	Slide 23: The Project View—Before we start
	Slide 24: The Project View—Artifacts and Views
	Slide 25: And get to work
	Slide 26: Requirements—Understand the problem
	Slide 27: Requirements—Understand the problem
	Slide 28: Requirements—Understand the problem
	Slide 29: Specification—Understand the workings
	Slide 30: Modeling—Understand the structure
	Slide 31: Design—Understand the solution
	Slide 32: So
	Slide 33: Rule 2 It Doesn’t End with the Coding
	Slide 34: OK, what’s left?
	Slide 35: Using Generative AI
	Slide 36: Testing—Check the solution
	Slide 37: Testing—Check the solution
	Slide 38: Validation & Verification—It ain’t just data
	Slide 39: Maintenance—Assure the solution
	Slide 40: Maintenance—Assure the solution
	Slide 41: Maintenance—Assure the solution
	Slide 42: Evolution—Extend the solution
	Slide 43: Reflection—Improve the process
	Slide 44: So
	Slide 45: Rule 3 There’s More than Coding While You’re Coding
	Slide 46: You’re not alone in the world
	Slide 47: Keep all the balls in the air
	Slide 48: Repeating myself
	Slide 49: This isn’t just an assignment
	Slide 50: Rule 4 Don’t Forget About the Coding
	Slide 51
	Slide 52: Layered development
	Slide 53
	Slide 54: Full Stack development
	Slide 55: Coding Standards
	Slide 56: Coding Standards
	Slide 57: But!
	Slide 58: Danger Signs
	Slide 59: Speed can kill
	Slide 60: Technical Debt and Refactoring
	Slide 61: Technical Debt and Refactoring
	Slide 62: Don’t bother if it’s not worth it
	Slide 63: While you’re coding
	Slide 64: Evolution revisited—Extend the solution
	Slide 65: Evolution revisited—Extend the solution
	Slide 66: Meta-Rule 1 No silver bullets, no golden hammers
	Slide 67: Fit your method to the problem
	Slide 68: Fit your method to the problem
	Slide 69: Fit your method to the problem
	Slide 70: Meta-Rule 2 It’s an approach, dammit, not a religion!
	Slide 71: Don’t complicate without reason
	Slide 72: Don’t be afraid to break the rules
	Slide 73: Keep learning
	Slide 74: Meta-meta-rule It’s Not Just Software Engineering
	Slide 75: These Rules Carry Over
	Slide 76: Some important references
	Slide 77: Acknowledgments
	Slide 78: Questions?
	Slide 79: Appendix: The Broad VIEW and the standard CS Curriculum
	Slide 80: Workflows—A lot of detail
	Slide 81: Workflows—Evolution during your major
	Slide 82: Workflows—Evolution during your major
	Slide 83: Workflows—Evolution during your major
	Slide 84: Workflows—Evolution during your major

